Boring Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 215 Accepted Submission(s): 103
Problem Description
Number theory is interesting, while this problem is boring.
Here is the problem. Given an integer sequence a1, a2, …, an, let S(i) = {j|1<=j<i, and aj is a multiple of ai}. If S(i) is not empty, let f(i) be the maximum integer in S(i); otherwise, f(i) = i. Now we define bi as af(i). Similarly, let T(i) = {j|i<j<=n, and aj is a multiple of ai}. If T(i) is not empty, let g(i) be the minimum integer in T(i); otherwise, g(i) = i. Now we define ci as ag(i). The boring sum of this sequence is defined as b1 * c1 + b2 * c2 + … + bn * cn.
Given an integer sequence, your task is to calculate its boring sum.
Here is the problem. Given an integer sequence a1, a2, …, an, let S(i) = {j|1<=j<i, and aj is a multiple of ai}. If S(i) is not empty, let f(i) be the maximum integer in S(i); otherwise, f(i) = i. Now we define bi as af(i). Similarly, let T(i) = {j|i<j<=n, and aj is a multiple of ai}. If T(i) is not empty, let g(i) be the minimum integer in T(i); otherwise, g(i) = i. Now we define ci as ag(i). The boring sum of this sequence is defined as b1 * c1 + b2 * c2 + … + bn * cn.
Given an integer sequence, your task is to calculate its boring sum.
Input
The input contains multiple test cases.
Each case consists of two lines. The first line contains an integer n (1<=n<=100000). The second line contains n integers a1, a2, …, an (1<= ai<=100000).
The input is terminated by n = 0.
Each case consists of two lines. The first line contains an integer n (1<=n<=100000). The second line contains n integers a1, a2, …, an (1<= ai<=100000).
The input is terminated by n = 0.
Output
Output the answer in a line.
Sample Input
5 1 4 2 3 9 0
Sample Output
136HintIn the sample, b1=1, c1=4, b2=4, c2=4, b3=4, c3=2, b4=3, c4=9, b5=9, c5=9, so b1 * c1 + b2 * c2 + … + b5 * c5 = 136.
题意:
给出数组a[i]
定义b[i]为 a[i]左侧第一个为a[i]倍数的数字,如果没有,则b[i]=a[i]。
定义c[i]为 a[i]右侧第一个为a[i]倍数的数字,如果没有,则c[i]=a[i]。
求∑(b[i]*c[i])
分析:
数组vis[i] 表示最新的是i的倍数的数字。
从左向右,如果vis[ a[i] ]>0 b[i]=vis[ a[i] ],否则b[i]=a[i],然后对于每一个a[i],枚举他的约数并且更新数组vis。
再从右向左计算c[i]。
最后求出答案。
算法复杂度(n*sqrt(n))
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#define INF 0x7fffffff
using namespace std;
const int N = 1e5 + 10;
int vis[N],a[N],b[N],c[N];
void update(int x)
{
int k=sqrt(1.0*x);
for(int i=1;i<=k;i++)
{
if(x%i) continue;
vis[i]=vis[x/i]=x;
}
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF&&n)
{
memset(vis,0,sizeof(vis));
memset(b,0,sizeof(b));
memset(c,0,sizeof(c));
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
for(int i=0;i<n;i++)
{
if(vis[a[i]]) b[i]=vis[a[i]];
else b[i]=a[i];
update(a[i]);
}
memset(vis,0,sizeof(vis));
for(int i=n-1;i>=0;i--)
{
if(vis[a[i]]) c[i]=vis[a[i]];
else c[i]=a[i];
update(a[i]);
}
long long sum=0;
for(int i=0;i<n;i++)
sum+=1LL*c[i]*b[i];
printf("%I64d\n",sum);
}
return 0;
}