COMP338 python

Java Python COMP338 – Computer Vision – Assignment 1

o This assignment is worth 15% of the total mark for COMP338

o Students will do the assignment individually.

Submission Instructions

o Send all solutions as a single PDF document containing your answers, results, and
discussion of the results. Attach the source code for the programming problems as
separate files. (One PDF doc, one source code file {python or Jupyter Notebook
(Ipython)})

o Each student will make a single submission to the Canvas system.

o The deadline for this assignment 14/11/2024, 5:00pm

o Penalties for late submission apply in accordance with departmental policy as set
out in the student handbook, which can be found at
http://intranet.csc.liv.ac.uk/student/msc-handbook.pdf
and the University Code of Practice on Assessment, found at
https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-onassessment/code_of_practice_on_assessment.pdf
Task 1. (50 marks) Canny Edge Detection

OpenCV provides a function canny() to get the edge detection result with an image (you can
use any grey image). Please do the following:

1. (25 marks) Reimplement the canny operation without using the built-in canny()
function (with some explanations of the code).
2. (10 marks) Test and visualize your implementation results. (with different filters,
different thresholds and others)
3. (15 marks) Discuss the difference between your implementation, your results
compared with the OpenCV implementation. (Compare the numerical results and the
running time and others.)

Note:
- It is acceptable if the implementations do not match exactly; you will need to analyze
the differences between your implementation and the Canny method. Including your < COMP338、python br>own reflections in the report will result in additional bonus points. However, it is
mandatory that you reimplement the function based on your understanding.

Task 2. (50 marks) Feature Extraction

In Lecture 11 and Lab 04 - SIFT & Feature Matching, we have discussed the SIFT feature.
In practice, there are several other feature extraction methods such as SURF or ORB. In this
task, we will do extra reading, implementation, and compare SIFT vs. SURF vs. ORB.

Papers to read:
- Bay et al., SURF: Speeded Up Robust Features, ECCV 2006
- Rublee et al., ORB: An efficient alternative to SIFT or SURF, ICCV 2011.

Good tutorials:
- https://docs.opencv.org/4.x/df/dd2/tutorial_py_surf_intro.html
- https://docs.opencv.org/4.x/d1/d89/tutorial_py_orb.html

1. (20 marks) Read the SURF and ORB papers and tutorials, summarize your
understanding. Compare the differences among SIFT vs. SURF vs. ORB.
2. (10 marks) Given two images (victoria.jpg and victoria2.jpg – both available on
Canvas), call OpenCV functions to extract ORB keypoints. You can use the built-in
functions from OpenCV. Visualize the detected keypoints.
3. (20 marks) Given two images (victoria.jpg and victoria2.jpg), extract the descriptors
using SIFT and ORB. Perform keypoint matching using Brute-Force Matcher. From
the results, which method do you think perform the best? Justify your answer.
Note:
- You can also choose the images yourself, as long as they are of the same subject taken
from different perspectives. You may directly use greyscale images.
- Including your own reflections in the report will result in additional bonus points.
However, it is mandatory that you reimplement the function based on your
understanding         

采用PyQt5框架与Python编程语言构建图书信息管理平台 本项目基于Python编程环境,结合PyQt5图形界面开发库,设计实现了一套完整的图书信息管理解决方案。该系统主要面向图书馆、书店等机构的日常运营需求,通过模块化设计实现了图书信息的标准化管理流程。 系统架构采用典型的三层设计模式,包含数据存储层、业务逻辑层和用户界面层。数据持久化方案支持SQLite轻量级数据库与MySQL企业级数据库的双重配置选项,通过统一的数据库操作接口实现数据存取隔离。在数据建模方面,设计了包含图书基本信息、读者档案、借阅记录等核心数据实体,各实体间通过主外键约束建立关联关系。 核心功能模块包含六大子系统: 1. 图书编目管理:支持国际标准书号、中国图书馆分类法等专业元数据的规范化著录,提供批量导入与单条录入两种数据采集方式 2. 库存动态监控:实时追踪在架数量、借出状态、预约队列等流通指标,设置库存预警阈值自动提醒补货 3. 读者服务管理:建立完整的读者信用评价体系,记录借阅历史与违规行为,实施差异化借阅权限管理 4. 流通业务处理:涵盖借书登记、归还处理、续借申请、逾期计算等标准业务流程,支持射频识别技术设备集成 5. 统计报表生成:按日/月/年周期自动生成流通统计、热门图书排行、读者活跃度等多维度分析图表 6. 系统维护配置:提供用户权限分级管理、数据备份恢复、操作日志审计等管理功能 在技术实现层面,界面设计遵循Material Design设计规范,采用QSS样式表实现视觉定制化。通过信号槽机制实现前后端数据双向绑定,运用多线程处理技术保障界面响应流畅度。数据验证机制包含前端格式校验与后端业务规则双重保障,关键操作均设有二次确认流程。 该系统适用于中小型图书管理场景,通过可扩展的插件架构支持功能模块的灵活组合。开发过程中特别注重代码的可维护性,采用面向对象编程范式实现高内聚低耦合的组件设计,为后续功能迭代奠定技术基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值