leetcode:Populating Next Right Pointers in Each Node II 【Java】

一、问题描述

Follow up for problem "Populating Next Right Pointers in Each Node".

What if the given tree could be any binary tree? Would your previous solution still work?

Note:

  • You may only use constant extra space.

For example,
Given the following binary tree,

         1
       /  \
      2    3
     / \    \
    4   5    7

After calling your function, the tree should look like:

         1 -> NULL
       /  \
      2 -> 3 -> NULL
     / \    \
    4-> 5 -> 7 -> NULL

二、问题分析

利用算法leetcode:Binary Tree Level Order Traversal 【Java】的解题技巧。

三、算法代码

/**
 * Definition for binary tree with next pointer.
 * public class TreeLinkNode {
 *     int val;
 *     TreeLinkNode left, right, next;
 *     TreeLinkNode(int x) { val = x; }
 * }
 */
public class Solution {
    public void connect(TreeLinkNode root) {
        if(root == null){
            return;
        }
        List<TreeLinkNode> pre = new ArrayList<TreeLinkNode>();//保存树中pre层树结点
        pre.add(root);
        int preLength = 0;
        List<TreeLinkNode> cur = null;//保存树中当前层树结点
        TreeLinkNode curNode = null;
        while(pre.size() != 0){
            preLength = pre.size();
            cur = new ArrayList<TreeLinkNode>();
            for(int i = 0; i <= preLength - 1; i++){
                curNode = pre.get(i);
                if(i == preLength - 1){ //如果是某一层的最后一个结点,则把它的next域置为null
                    curNode.next = null;
                }else{
                    curNode.next = pre.get(i + 1);
                }
                if(curNode.left != null){
                    cur.add(curNode.left); 
                }
                if(curNode.right != null){
                    cur.add(curNode.right); 
                }
            }
            pre = cur;
        }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值