一、问题描述
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both
indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
二、问题分析
1、采用回溯算法;
2、找到一个可行解之后,还需要继续搜索。
三、算法代码
public class Solution {
public List<List<String>> solveNQueens(int n) {
List<List<String>> result = new ArrayList<>();
if (n <= 0) return result;
char[][] board = new char[n][n];
for (char[] row : board) {
Arrays.fill(row, '.');
}
boolean[] col_occupied = new boolean[n];
placeQueen(result, board, col_occupied, 0, n);
return result;
}
private void placeQueen(List<List<String>> result, char[][] board, boolean[] col_occupied, int rowNum, int n) {
if (rowNum == n) {
List<String> list = new ArrayList<String>();
for (char[] row : board) {
list.add(new String(row));
}
result.add(list);
return;
}
for (int colNum=0; colNum<n; colNum++) {
if (isValid(board, col_occupied, rowNum, colNum, n)){
board[rowNum][colNum] = 'Q';
col_occupied[colNum] = true;
placeQueen(result, board, col_occupied, rowNum+1, n);
board[rowNum][colNum] = '.'; //回溯,尝试皇后rowNum的下一个位置
col_occupied[colNum] = false;
}
}
}
private boolean isValid(char[][]board, boolean[] col_occupied, int row, int col, int n) {
if (col_occupied[col]) return false;
for (int i=1; row-i>=0 && col-i>=0; i++) {
if (board[row-i][col-i] == 'Q') return false;//反对角斜线
}
for (int i=1; row-i>=0 && col+i<n; i++) {
if (board[row-i][col+i] == 'Q') return false;//正对角斜线
}
return true;
}
}