codeforces622D Optimal Number Permutation

本文介绍 CodeForces 平台上的题目 622D 的解决方案,该题要求找到一种最优排列方式,使得由 1 到 n 的整数重复两次构成的序列达到特定条件下的最小值。文章详细解析了题目的要求,并提供了一种高效的算法思路及其实现代码。

原题链接:http://codeforces.com/problemset/problem/622/D



D. Optimal Number Permutation
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You have array a that contains all integers from 1 to n twice. You can arbitrary permute any numbers in a.

Let number i be in positions xi, yi (xi < yi) in the permuted array a. Let's define the value di = yi - xi — the distance between the positions of the number i. Permute the numbers in array a to minimize the value of the sum .

Input

The only line contains integer n (1 ≤ n ≤ 5·105).

Output

Print 2n integers — the permuted array a that minimizes the value of the sum s.

Examples
input
2
output
1 1 2 2
input
1
output
1 1



题意:

长度为2*N的序列,包含1~N的数字各两个,要求找到一个排列,使得最小。。


思路:

只有di可变,所以使di+i-n的绝对值最小(di表示相同两数之间的距离),那么di=n-i;

所以1之间需要隔n-2个数字,2之间需要n-3个数字,3之间需要n-4个数字;

那么当1放完之后,其之间的n-2个空间(首尾相隔n-4)可以放3,以此类推;

所以我们可以把奇数和偶数分开放。



代码:

#include <cstdio>
#include <cstring>

int a[500005*2];

int main()
{
	int i, j, x, y,n;
	while (~scanf("%d", &n))
	{
		memset(a, 0, sizeof(a));
		if (n == 1)
		{
			printf("1 1\n");
			continue;
		}
		x = 1;
		y = n;
		a[x] = a[y] = 1;
		i = 3;
		x++;
		y--;
		while (x < y)
		{
			
			a[x] = a[y] = i;
			x++;
			y--;
			i += 2;
		}
		x = n+1;
		y = 2 * n - 1;
		a[x] = a[y] = 2;
		i = 4;
		x++;
		y--;
		while (x < y)
		{
			
			a[x] = a[y] = i;
			x++;
			y--;
			i += 2;
		}
		for (i = 1; i <= 2 * n; i++)
		{
			if (a[i] == 0)
				printf(i == 1 ? "%d" : " %d", n);
			else
				printf(i == 1 ? "%d" : " %d", a[i]);
		}
		printf("\n");
	}
	return 0;
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值