# 探索Amazon SageMaker Experiments:轻松跟踪您的AI实验!
## 引言
在机器学习领域,实验跟踪和管理是开发和优化模型过程中不可或缺的一部分。Amazon SageMaker Experiments是一项强大的工具,它可以帮助开发者组织、跟踪、比较和评估机器学习实验和模型版本。在这篇文章中,我们将探讨如何使用LangChain Callback将提示和其他超参数记录到SageMaker Experiments中。我们将通过三个不同的场景来展示这种能力。
## 主要内容
### 安装与设置
首先,我们需要安装必要的库并设置API密钥。
```bash
%pip install --upgrade --quiet sagemaker
%pip install --upgrade --quiet langchain-openai
%pip install --upgrade --quiet google-search-results
接下来,设置所需的API密钥:
import os
# 添加你的API密钥
os.environ["OPENAI_API_KEY"] = "<ADD-KEY-HERE>"
os.environ["SERPAPI_API_KEY"] = "<ADD-KEY-HERE>"
场景1:单一语言模型
在这个场景中,我们使用单一LLM模型根据给定的提示生成输出。
# LLM超参数
HPARAMS = {
"temperature": 0.1,
"model_name": "gpt-3.5-turbo-instruct",
}
# 使用API代理服务提高访问稳定性
BUCKET_NAME = None
EXPERIMENT_NAME = "langchain-sagemaker-tracker"
# 创建SageMaker会话
session = Session(default_bucket=BUCKET_NAME)
RUN_NAME = "run-scenario-1"
PROMPT_TEMPLATE = "tell me a joke about {topic}"
INPUT_VARIABLES = {"topic": "fish"}
with Run(experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session) as run:
sagemaker_callback = SageMakerCallbackHandler(run)
# 定义LLM模型
llm = OpenAI(callbacks=[sagemaker_callback], **HPARAMS)
# 创建提示模板
prompt = PromptTemplate.from_template(template=PROMPT_TEMPLATE)
# 创建LLM链
chain = LLMChain(llm=llm, prompt=prompt, callbacks=[sagemaker_callback])
# 运行链
chain.run(**INPUT_VARIABLES)
sagemaker_callback.flush_tracker()
场景2:顺序链
这里我们创建一个顺序链,使用两个LLM模型。
RUN_NAME = "run-scenario-2"
PROMPT_TEMPLATE_1 = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
PROMPT_TEMPLATE_2 = """You are a play critic from the New York Times. Given the synopsis of play, it is your job to write a review for that play.
Play Synopsis: {synopsis}
Review from a New York Times play critic of the above play:"""
INPUT_VARIABLES = {
"input": "documentary about good video games that push the boundary of game design"
}
with Run(experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session) as run:
sagemaker_callback = SageMakerCallbackHandler(run)
# 创建提示模板
prompt_template1 = PromptTemplate.from_template(template=PROMPT_TEMPLATE_1)
prompt_template2 = PromptTemplate.from_template(template=PROMPT_TEMPLATE_2)
llm = OpenAI(callbacks=[sagemaker_callback], **HPARAMS)
chain1 = LLMChain(llm=llm, prompt=prompt_template1, callbacks=[sagemaker_callback])
chain2 = LLMChain(llm=llm, prompt=prompt_template2, callbacks=[sagemaker_callback])
overall_chain = SimpleSequentialChain(chains=[chain1, chain2], callbacks=[sagemaker_callback])
overall_chain.run(**INPUT_VARIABLES)
sagemaker_callback.flush_tracker()
场景3:带有工具的代理
在这种情况下,除了LLM,我们还使用多个工具(搜索和数学)。
RUN_NAME = "run-scenario-3"
PROMPT_TEMPLATE = "Who is the oldest person alive? And what is their current age raised to the power of 1.51?"
with Run(experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session) as run:
sagemaker_callback = SageMakerCallbackHandler(run)
llm = OpenAI(callbacks=[sagemaker_callback], **HPARAMS)
tools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=[sagemaker_callback])
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", callbacks=[sagemaker_callback])
agent.run(input=PROMPT_TEMPLATE)
sagemaker_callback.flush_tracker()
代码示例
如上所示,我们通过三种不同的场景利用SageMaker Experiments来记录和跟踪模型提示和超参数。
常见问题和解决方案
网络限制问题
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务以提高访问稳定性。
数据隐私
确保在上传和处理实验数据时遵循有关数据隐私的最佳实践,尤其是涉及敏感信息的时候。
总结和进一步学习资源
通过本文,我们了解了如何使用Amazon SageMaker Experiments来跟踪和管理AI实验。以下资源可帮助您进一步深入了解:
参考资料
- Amazon SageMaker Experiments Overview
- LangChain Callback Integration Guide
- AWS SageMaker Official Page
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---