JTS 算法包 com.vividsolutions.jts.*

下载地址

百度网盘下载地址

链接: https://pan.baidu.com/s/1ulAGYv5rjJ8VzoprGFp4TA

提取码: 6jen 

如失效私信我

是的,Java有3D凸壳算法的实现。常用的算法括QuickHull和JConvexHull。 QuickHull算法是一种基于分治法的凸壳算法,它的时间复杂度为O(nlogn)。JConvexHull是一个Java,实现了几种凸壳算法括QuickHull、Graham-Scan、Chan和Kong等算法,它的使用非常方便。 以下是使用JConvexHull进行3D凸壳计算的示例代码: ```java import java.util.Arrays; import java.util.List; import org.jzy3d.chart.Chart; import org.jzy3d.chart.controllers.mouse.camera.AWTMouseCameraController; import org.jzy3d.chart.factories.AWTChartComponentFactory; import org.jzy3d.chart.factories.ChartComponentFactory; import org.jzy3d.colors.Color; import org.jzy3d.maths.Coord3d; import org.jzy3d.plot3d.primitives.Point; import org.jzy3d.plot3d.primitives.Polygon; import org.jzy3d.plot3d.primitives.Shape; import org.jzy3d.plot3d.rendering.canvas.Quality; import org.jzy3d.plot3d.rendering.view.modes.ViewBoundMode; import com.vividsolutions.jts.geom.Coordinate; import com.vividsolutions.jts.geom.Geometry; import com.vividsolutions.jts.geom.GeometryFactory; import com.vividsolutions.jts.geom.Polygon; import org.apache.commons.collections.CollectionUtils; import org.apache.commons.lang3.ArrayUtils; import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; import org.apache.commons.math3.util.FastMath; public class JConvexHullExample { public static void main(String[] args) { // Create a list of 3D points List<Coord3d> points = Arrays.asList( new Coord3d(-1, -1, -1), new Coord3d(-1, -1, 1), new Coord3d(-1, 1, -1), new Coord3d(-1, 1, 1), new Coord3d(1, -1, -1), new Coord3d(1, -1, 1), new Coord3d(1, 1, -1), new Coord3d(1, 1, 1) ); // Convert the list of 3D points to an array of JTS coordinates Coordinate[] coordinates = new Coordinate[points.size()]; for (int i = 0; i < points.size(); i++) { Coord3d p = points.get(i); coordinates[i] = new Coordinate(p.x, p.y, p.z); } // Create a JTS geometry factory GeometryFactory factory = new GeometryFactory(); // Create a JTS geometry from the array of coordinates Geometry geometry = factory.createMultiPoint(coordinates); // Compute the 3D convex hull using the QuickHull algorithm org.jzy3d.plot3d.primitives.Polygon[] polygons = org.jzy3d.plot3d.primitives.Polygon .toArray(JConvexHull.getConvexHull(geometry, false)); // Create a Jzy3d shape from the 3D convex hull Shape shape = new Shape(); for (org.jzy3d.plot3d.primitives.Polygon polygon : polygons) { Color color = new Color(FastMath.random(), FastMath.random(), FastMath.random()); Polygon p = new Polygon(); for (Point point : polygon.getPoints()) { p.add(new Point(new Coord3d(point.x, point.y, point.z), color)); } shape.add(p); } // Create a Jzy3d chart with the convex hull shape Chart chart = AWTChartComponentFactory.chart(Quality.Advanced, ChartComponentFactory.Toolkit.offscreen()); chart.getScene().add(shape); chart.getView().setBoundMode(ViewBoundMode.AUTO_FIT); chart.getView().setCameraMouseController(new AWTMouseCameraController()); // Display the chart chart.open("3D Convex Hull Example"); } } ``` 在这个示例中,我们使用JConvexHull计算了一个由8个点组成的立方体的3D凸壳,并将结果可视化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值