Recommender System Fragment 1

本文详细介绍了推荐系统的处理流程,从获取用户特征开始,通过不同队列动态更新候选物品,利用预训练模型进行排序,并最终输出顶部推荐结果。文章还探讨了如何实现反垃圾及作弊模块等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Recommender System Fragment_1

  1. Procedure

    • when a scenario(user) comes, fetch all the user’s properties and then pull candidates(items) from several queues depending on recall strategy(how? what model?). rank over all these candidate(~1000?) and push out the top ones.
  2. Details

    • each queue is updated dynamically.
    • queue length? ~ 1000?
    • always fetch from queue front? a bit slower and slower for bloom filter but acceptable cz queue not too long.
    • ranking is a pre-trained stable model. just do ‘prediction’. parallel if needed.
    • all queue and BF could be in memory.
  3. Qs

    • how to get user’s features? kv db and/or what? – kv db
    • how to get doc features? are they stored in queue? – yes
    • how and where to apply anti-spam & anti-cheating module?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值