POJ-2192 Zipper

本文解析了POJ-2192 Zipper问题,通过动态规划方法验证是否能从两个字符串中按原顺序组合形成第三个字符串。提供了一种有效的算法实现,并附带源代码。

POJ-2192 Zipper

题目

Description

Given three strings, you are to determine whether the third string can be formed by combining the characters in the first two strings. The first two strings can be mixed arbitrarily, but each must stay in its original order.

For example, consider forming “tcraete” from “cat” and “tree”:

String A: cat
String B: tree
String C: tcraete

As you can see, we can form the third string by alternating characters from the two strings. As a second example, consider forming “catrtee” from “cat” and “tree”:

String A: cat
String B: tree
String C: catrtee

Finally, notice that it is impossible to form “cttaree” from “cat” and “tree”.

Input

The first line of input contains a single positive integer from 1 through 1000. It represents the number of data sets to follow. The processing for each data set is identical. The data sets appear on the following lines, one data set per line.

For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two strings will have lengths between 1 and 200 characters, inclusive.

Output

For each data set, print:
Data set n: yes
if the third string can be formed from the first two, or
Data set n: no
if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example.

Sample Input

3
cat tree tcraete
cat tree catrtee
cat tree cttaree

Sample Output

Data set 1: yes
Data set 2: yes
Data set 3: no


题解

首先明确几点:

  • 串C的长度等于串A+串B

  • 串C中每个字符要么来自串A要么来自于串B

于是我们可以做出以下推导:

  • StrC==NULL—>A==NULL&&B===NULL
  • StrC+C[1]—>Len(StrC)+1—>Len(StrA)+1||Len(StrB)+1
  • 因为C中的每个字符都是来自于A或者B—>C[1]==A[1]||C[1]==B[1]

因为长度相等,所以C[i]不是来自于A[j]就是来自于B[ij],所以我们只需表示A[j]即可

于是DP递推式表示如下:

  • DP[i][j]:i,StrC的下标,j:StrA的下标
  • DP[All][All]=0,DP[0][0]=1
  • StrC[i+1]==StrA[i+1]–>DP[i+1][j+1]=1
  • StrC[i+1]==StrB[i+1j]—>DP[i+1][j]=1
  • DP[LenC][LenA]==1–>Yes

代码

/*********************************
Author: Toudsour
Created Time: 五  8/14 19:17:24 2015
File Name:D.cpp
*********************************/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
char StrA[210];
char StrB[210];
char StrC[410];
int DP[410][210];
int main()
{
    int T;
    scanf("%d",&T);
    for(int Case=1;Case<=T;Case++)
    {
        int LenA;
        int LenB;
        int LenC;
        scanf("%s",StrA+1);
        scanf("%s",StrB+1);
        scanf("%s",StrC+1); 
        LenA=strlen(StrA+1);
        LenB=strlen(StrB+1);
        LenC=strlen(StrC+1);
        memset(DP,0,sizeof(DP));
        DP[0][0]=1;
        for(int i=0;i<=LenC;i++)
        {
            for(int j=0;j<=LenA;j++)
                if(DP[i][j]==1)
                {
                    //cout<<StrT[i+1]<<" "<<StrO[j+1]<<" "<<StrD[i+1-j]<<endl;
                    if(StrC[i+1]==StrA[j+1])
                        DP[i+1][j+1]=1;
                    if(StrC[i+1]==StrB[i+1-j]&&(i+1-j)<=LenD)
                        DP[i+1][j]=1;
                }
        }
        if(DP[LenC][LenA])
            printf("Data set %d: yes\n",Case);
        else
            printf("Data set %d: no\n",Case);
    }
    return 0;
}
内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值