优化问题的拉格朗日Lagrange对偶法原理

首先我们定义一般形式的求解x的优化问题:

\\ \text{ Minimize }\ f_o(x) \\ f_i(x)\leq 0, i=1,...,m \\ h_j(x)= 0, j=1,...n \\

  • f_o(x)表示优化的目标函数,上述为最小优化,实际上最大优化可以改写为-f_o(x)的形式
  • f_i(x)\leq 0表示第i个不等式约束
  • h_j(x)=0表示等式约束

1. Lagrange对偶问题

上述优化问题的拉格朗日Lagrange对偶法求解,是将上述带约束的目标优化问题改写为如下无约束的Lagrange函数式子。

L(x,\lambda ,\nu )=f_o(x) + \sum_i^m \lambda_i f_i(x) + \sum_j^n \nu_j h_j(x)

上述Lagrange函数式子存在如下对偶函数,其是Lagrange函数关于x取最小值,即:

g(\lambda ,\nu) = \underset{x}{inf}(L(x,\lambda ,\nu ))=\underset{x}{inf}(f(x) + \sum_i^m \lambda_i f_i(x) + \sum_j^n \nu_j h_j(x))

对偶函数是关于\lambda ,\nu的函数,很显然其是原来Lagrange函数式子的下界,假设优化问题存在最优解x^*,当\lambda_i\geq 0时,此时存在最优目标大于对偶函数。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值