#include<math.h>
#include<iostream>
using namespace std;
void newton(int n,double x[],double y[],double eps);
double fn(int n,double x[],double y[]);
const double PI = 3.14159265358979323846;
int main()
{
int i,n=3;
double y[3],x[3]={0.5,0.5,0.5};
double eps=1.e-08;
newton(n,x,y,eps);
for(i=0;i<n;i++)
{
cout<<i<<" "<<x[i]<<" "<<y[i]<<endl;
}
return 0;
}
double fn(int n,double x[],double y[])
{
double s2=0.0;
y[0]=3.0*x[0]-cos(x[1]*x[2])-1.5;
y[1]=4*x[0]*x[0]-625*x[1]*x[1]+2*x[2]-1;
y[2]=exp(-x[0]*x[1])+20*x[2]+(10*PI-3)/3.0;
for(int i=0;i<n;i++)
{
s2+=y[i]*y[i];
}
return s2;
}
void newton(int n,double x[],double y[],double eps)
{
double s[3],s0,s1,s2,t,alpha,h=1.e-05;
while(1)
{
s2=fn(n,x,y);
s0=s2;
if(s0<eps)
break;
s1=0.0;
for(int i=0;i<n;i+&#
用梯度下降法解非线性方程
最新推荐文章于 2022-12-19 15:26:31 发布