// MP Reduction
// Given a list (lst) of length n
// Output its sum = lst[0] + lst[1] + ... + lst[n-1];
#include <wb.h>
#define BLOCK_SIZE 512 //@@ You can change this
#define wbCheck(stmt) do { \
cudaError_t err = stmt; \
if (err != cudaSuccess) { \
wbLog(ERROR, "Failed to run stmt ", #stmt); \
wbLog(ERROR, "Got CUDA error ... ", cudaGetErrorString(err)); \
return -1; \
} \
} while(0)
__global__ void total(float * input, float * output, int len) {
//@@ Load a segment of the input vector into shared memory
//@@ Traverse the reduction tree
//@@ Write the computed sum of the block to the output vector at the
//@@ correct index
__shared__ float partialSum[BLOCK_SIZE*2];
unsigned int t=threadIdx.x;
unsigned int start=blockIdx.x*blockDim.x*2;
if(start+t<len)
{
partialSum[t]=input[start+t];
}
else
partialSum[t]=0;
if(start+t+blockDim.x<len)
partialSum[t+blockDim.x]=input[start+t+blockDim.x];
else
partialSum[t+blockDim.x]=0;
__syncthreads();
for(unsigned int stride=blockDim.x;stride>0;stride/=2)
{
__syncthreads();
if(t<stride)
partialSum[t]+=partialSum[t+stride];
}
__syncthreads();
if(t==0)
output[blockIdx.x]=partialSum[0];
}
int main(int argc, char ** argv) {
int ii;
wbArg_t args;
float * hostInput; // The input 1D list
float * hostOutput; // The output list
float * deviceInput;
float * deviceOutput;
int numInputElements; // number of elements in the input list
int numOutputElements; // number of elements in the output list
args = wbArg_read(argc, argv);
wbTime_start(Generic, "Importing data and creating memory on host");
hostInput = (float *) wbImport(wbArg_getInputFile(args, 0), &numInputElements);
numOutputElements = numInputElements / (BLOCK_SIZE<<1);
if (numInputElements % (BLOCK_SIZE<<1)) {
numOutputElements++;
}
hostOutput = (float*) malloc(numOutputElements * sizeof(float));
wbTime_stop(Generic, "Importing data and creating memory on host");
wbLog(TRACE, "The number of input elements in the input is ", numInputElements);
wbLog(TRACE, "The number of output elements in the input is ", numOutputElements);
wbTime_start(GPU, "Allocating GPU memory.");
//@@ Allocate GPU memory here
cudaMalloc((void**)&deviceInput,sizeof(float)*numInputElements);
cudaMalloc((void**)&deviceOutput,sizeof(float)*numOutputElements);
wbTime_stop(GPU, "Allocating GPU memory.");
wbTime_start(GPU, "Copying input memory to the GPU.");
//@@ Copy memory to the GPU here
cudaMemcpy(deviceInput,hostInput,sizeof(float)*numInputElements,cudaMemcpyHostToDevice);
wbTime_stop(GPU, "Copying input memory to the GPU.");
//@@ Initialize the grid and block dimensions here
dim3 dimGrid(numOutputElements,1,1);
dim3 dimBlock(BLOCK_SIZE,1,1);
wbTime_start(Compute, "Performing CUDA computation");
//@@ Launch the GPU Kernel here
total<<<dimGrid,dimBlock>>>(deviceInput,deviceOutput,numInputElements);
cudaDeviceSynchronize();
wbTime_stop(Compute, "Performing CUDA computation");
wbTime_start(Copy, "Copying output memory to the CPU");
//@@ Copy the GPU memory back to the CPU here
cudaMemcpy(hostOutput,deviceOutput,sizeof(float)*numOutputElements,cudaMemcpyDeviceToHost);
wbTime_stop(Copy, "Copying output memory to the CPU");
/********************************************************************
* Reduce output vector on the host
* NOTE: One could also perform the reduction of the output vector
* recursively and support any size input. For simplicity, we do not
* require that for this lab.
********************************************************************/
for (ii = 1; ii < numOutputElements; ii++) {
hostOutput[0] += hostOutput[ii];
}
wbTime_start(GPU, "Freeing GPU Memory");
//@@ Free the GPU memory here
cudaFree(deviceInput);
cudaFree(deviceOutput);
wbTime_stop(GPU, "Freeing GPU Memory");
wbSolution(args, hostOutput, 1);
free(hostInput);
free(hostOutput);
return 0;
}