传送门
题意

分析
很容易写出状态转移方程
f
[
j
]
=
m
a
x
(
f
[
j
]
,
f
[
j
−
y
]
+
(
t
−
j
)
∗
x
)
;
f[j] = max(f[j],f[j - y] + (t - j) * x);
f[j]=max(f[j],f[j−y]+(t−j)∗x);
似乎是一个背包问题
但是需要考虑的是,背包是不用考虑顺序问题的,这里需要考虑一下顺序问题
所以按照比例
s
o
r
t
sort
sort一下再去背包
代码
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
int n,t;
ll f[N];
struct Node{
ll x,y;
}a[N];
bool cmp(Node A,Node B){
return A.x * 1.0 / ( A.y * 1.0) > B.x * 1.0 / (B.y * 1.0);
}
int main() {
read(n),read(t);
ll ans = 0;
for(int i = 1;i <= n;i++){
read(a[i].x),read(a[i].y);
}
sort(a + 1,a + 1 + n,cmp);
for(int i = 1;i <= n;i++){
ll x,y;
x = a[i].x,y = a[i].y;
for(int j = t;j >= y;j--){
f[j] = max(f[j],f[j - y] + (t - j) * x);
ans = max(ans,f[j]);
}
}
dl(ans);
return 0;
}
965

被折叠的 条评论
为什么被折叠?



