传送门
题意
给出
n
n
n个数,有
m
m
m个操作
1
x
w
1 x w
1xw 将
x
x
x位置上的数改成
w
w
w
2
l
r
2 l r
2lr 查询区间
[
l
,
r
]
[ l , r ]
[l,r]内有多少个连续的递增区间(单个数也算)
分析
首先考虑线段树的写法
我们需要维护的是区间内符合条件的个数,初步考虑的话似乎是有区间相加的性质的,如果考虑两个区间相互独立,不会对各自的递增性质产生影响的话
但是,在两个区间合并成一个大区间的,有可能中间的部分会产生连续的递增区间,这个时候合并的时候需要维护一个中点向左边和右边拓展的最大长度,然后判断两个端点是否能进行合并,然后向上
p
u
s
h
push
push
代码
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
struct Node{
int l,r;
int len,ren;
ll sum;
}tr[N * 4];
int a[N];
int n,m;
void push(int u){
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
tr[u].len = tr[u << 1].len,tr[u].ren = tr[u << 1 | 1].ren;
if(a[tr[u << 1].r] <= a[tr[u << 1 | 1].l]){
if(tr[u << 1].len == tr[u << 1].r - tr[u << 1].l + 1) tr[u].len = tr[u << 1].len + tr[u << 1 | 1].len;
if(tr[u << 1 | 1].ren == tr[u << 1 | 1].r - tr[u << 1 | 1].l + 1) tr[u].ren = tr[u << 1 | 1].ren + tr[u << 1].ren;
tr[u].sum += 1ll * tr[u << 1].ren * tr[u << 1 | 1].len;
}
}
void build(int u,int l,int r){
tr[u] = {l,r};
if(l == r){
tr[u].sum = tr[u].len = tr[u].ren = 1;
return;
}
int mid = (l + r) >> 1;
build(u << 1,l,mid),build(u << 1 | 1,mid + 1,r);
push(u);
}
void modify(int u,int x,int val){
if(tr[u].l == tr[u].r){
a[x] = val;
return;
}
int mid = (tr[u].l + tr[u].r) >> 1;
if(x <= mid) modify(u << 1,x,val);
else modify(u << 1 | 1,x,val);
push(u);
}
ll query(int u,int l,int r){
if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
int mid = (tr[u].l + tr[u].r) >> 1;
ll ans = 0;
if(l <= mid) ans = query(u << 1,l,r);
if(r > mid) ans += query(u << 1 | 1,l,r);
if(a[tr[u << 1].r] <= a[tr[u << 1 | 1].l]){
ll lsum = min(mid - l + 1,tr[u << 1].ren),rsum = min(r - mid,tr[u << 1 | 1].len);
if(lsum > 0 && rsum > 0) ans += lsum * rsum;
}
return ans;
}
int main() {
read(n),read(m);
for(int i = 1;i <= n;i++) read(a[i]);
build(1,1,n);
while(m--){
int op,x,y;
read(op),read(x),read(y);
if(op == 1) modify(1,x,y);
else {dl(query(1,x,y));}
}
return 0;
}