传送门
题意
分析
经典的线段树上二分问题
我们去用线段树维护区间
m
a
x
,
m
i
n
,
s
u
m
max,min,sum
max,min,sum
- 操作一
只需要找到区间 1 − x 1 - x 1−x内第一个小于等于 y y y的位置 p p p即可,然后修改 p − x p - x p−x区间,可以在二分区间 m a x max max - 操作二
我们可以先暴力加上 1 − ( x − 1 ) 1 - (x - 1) 1−(x−1)这个区间的值,这样就可以把问题转化成在 1 − n 1 - n 1−n这个区间里面进行查询,查询区间 m i n min min是否小于等于 y y y即可
代码
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
int a[N];
int n,m;
ll val;
struct Node{
int l,r;
int max,min;
ll sum;
int add;
}tr[N * 4];
void push(int u){
tr[u].max = max(tr[u << 1].max,tr[u << 1 | 1].max);
tr[u].min = min(tr[u << 1].min,tr[u << 1 | 1].min);
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void down(int u){
if(tr[u].add){
int &k = tr[u].add;
tr[u << 1].sum = 1ll * (tr[u << 1].r - tr[u << 1].l + 1) * k;
tr[u << 1].max = k;
tr[u << 1].min = k;
tr[u << 1].add = k;
tr[u << 1 | 1].sum = 1ll * (tr[u << 1 | 1].r - tr[u << 1 | 1].l + 1) * k;
tr[u << 1 | 1].max = k;
tr[u << 1 | 1].min = k;
tr[u << 1 | 1].add = k;
k = 0;
}
}
void build(int u,int l,int r){
tr[u] = {l,r,0,0,0,0};
if(l == r){
tr[u].max = tr[u].sum = a[l];
tr[u].min = a[l];
return;
}
int mid = (l + r) >> 1;
build(u << 1,l,mid),build(u << 1 | 1,mid + 1,r);
push(u);
}
void modify(int u,int l,int r,int k){
if(tr[u].l >= l && tr[u].r <= r){
tr[u].max = k;
tr[u].min = k;
tr[u].add = k;
tr[u].sum = 1ll * (tr[u].r - tr[u].l + 1) * k;
return;
}
down(u);
int mid = (tr[u].l + tr[u].r) >> 1;
if(l <= mid) modify(u << 1,l,r,k);
if(r > mid) modify(u << 1 | 1,l,r,k);
push(u);
}
int query_max(int u,int l,int r){
if(tr[u].l >= l && tr[u].r <= r) return tr[u].max;
down(u);
int mid = (tr[u].l + tr[u].r) >> 1;
int res = 0;
if(l <= mid) res = query_max(u << 1,l,r);
if(r > mid) res = max(res,query_max(u << 1 | 1,l,r));
return res;
}
int query_min(int u,int l,int r){
if(tr[u].l >= l && tr[u].r <= r) return tr[u].min;
down(u);
int mid = (tr[u].l + tr[u].r) >> 1;
int res = INF;
if(l <= mid) res = query_min(u << 1,l,r);
if(r > mid) res = min(res,query_min(u << 1 | 1,l,r));
return res;
}
ll query_sum(int u,int l,int r){
if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
down(u);
int mid = (tr[u].l + tr[u].r) >> 1;
ll res = 0;
if(l <= mid) res = query_sum(u << 1,l,r);
if(r > mid) res += query_sum(u << 1 | 1,l,r);
return res;
}
int query(int u){
if(tr[u].sum <= val){
val-= tr[u].sum;
return tr[u].r - tr[u].l + 1;
}
down(u);
int ans = 0;
if(tr[u << 1].min <= val) ans = query(u << 1);
if(tr[u << 1 | 1].min <= val) ans += query(u << 1 | 1);
return ans;
}
void solve1(int r,int x){
if(query_max(1,1,r) <= x){
modify(1,1,r,x);
return;
}
if(query_min(1,1,r) >= x){
return;
}
int back = r;
int l = 1;
while(l < r){
int mid = (l + r) >> 1;
if(query_max(1,mid,back) <= x) r = mid;
else l = mid + 1;
}
modify(1,l,back,x);
return;
}
void solve2(int l,ll x){
if(query_sum(1,l,n) <= x){
di(n - l + 1);
return;
}
if(l > 1) x += query_sum(1,1,l - 1);
val = x;
int res = query(1);
di(res - (l - 1));
}
int main() {
read(n),read(m);
for(int i = 1;i <= n;i++) read(a[i]);
build(1,1,n);
while(m--){
int op,x,y;
read(op),read(x),read(y);
if(op == 1) solve1(x,y);
else solve2(x,y);
}
return 0;
}