传送门
题意
给你一颗带权树,多次询问路径上出现次数过半的权值
分析
主席树维护一下
u
u
u节点到根节点上,所有权值出现的次数即可
最后需要注意一下的是,在减去两倍
l
c
a
lca
lca的时候,会把
l
c
a
lca
lca一起减去,在查询过程过需要补上
代码
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 250010, M = N * 2;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
int h[N], e[M], ne[M], idx;
int father;
struct Node {
int l, r;
int cnt;
} tr[N * 100];
int root[N], dep[N], fa[N][25], a[N];
int n, m;
void add(int x, int y) {
ne[idx] = h[x], e[idx] = y, h[x] = idx++;
}
int build(int l, int r) {
int p = ++idx;
tr[p].cnt = 0;
if (l == r) return p;
int mid = (l + r) >> 1;
tr[p].l = build(l, mid), tr[p].r = build(mid + 1, r);
return p;
}
int insert(int p, int l, int r, int x) {
int q = ++idx;
tr[q] = tr[p];
if (l == r) {
tr[q].cnt++;
return q;
}
int mid = (l + r) >> 1;
if (x <= mid) tr[q].l = insert(tr[p].l, l, mid, x);
else tr[q].r = insert(tr[p].r, mid + 1, r, x);
tr[q].cnt = tr[tr[q].l].cnt + tr[tr[q].r].cnt;
return q;
}
void dfs(int u, int f) {
fa[u][0] = f;
dep[u] = dep[f] + 1;
root[u] = insert(root[f], 1, n, a[u]);
for (int i = 1; i <= 20; i++)
fa[u][i] = fa[fa[u][i - 1]][i - 1];
for (int i = h[u]; ~i; i = ne[i]) {
int j = e[i];
if (j == f) continue;
dfs(j, u);
}
}
int LCA(int a, int b) {
if (dep[a] < dep[b]) swap(a, b);
for (int i = 20; i >= 0; i--)
if (dep[fa[a][i]] >= dep[b])
a = fa[a][i];
if (a == b) return a;
for (int i = 20; i >= 0; i--)
if (fa[a][i] != fa[b][i])
a = fa[a][i], b = fa[b][i];
return fa[a][0];
}
int query(int x,int y,int z,int l,int r,int k){
int num = tr[y].cnt + tr[z].cnt - 2 * tr[x].cnt;
if(l == r) return l;
int cnt1 = tr[tr[y].l].cnt + tr[tr[z].l].cnt - 2 * tr[tr[x].l].cnt;
int cnt2 = num - cnt1;
int ans = -1;
int mid = (l + r) >> 1;
if(a[father] >= l && a[father] <= mid) cnt1++;
else if(a[father] > mid && a[father] <= r) cnt2++;
if(cnt1 >= k) ans = query(tr[x].l,tr[y].l,tr[z].l,l,mid,k);
else if(cnt2 >= k) ans = query(tr[x].r,tr[y].r,tr[z].r,mid + 1,r,k);
return ans;
}
int main() {
memset(h, -1, sizeof h);
read(n), read(m);
for (int i = 1; i <= n; i++) read(a[i]);
for(int i = 1;i < n;i++){
int a,b;
read(a),read(b);
add(a,b),add(b,a);
}
root[0] = build(1, n);
dfs(1, 0);
while(m--){
int l,r;
read(l),read(r);
father = LCA(l,r);
int num = dep[l] + dep[r] - 2 * dep[father] + 1;
num = num / 2 + 1;
int ans = query(root[father],root[l],root[r],1,n,num);
di(ans);
}
return 0;
}