传送门
分析
这道题如果暴力上去莽的话,可以直接过,但是我们要分析一下为什么是时间复杂度不会被卡掉
首先我们假设数字
1
1
1要转化,那么可以转化的最小数字就是
2
2
2,
2
2
2可以转化的最小数字是
4
4
4,不难发现,每个数字可以转化的次数是有限的,所以实际跑起来的时候时间复杂度远远达不到
O
(
n
m
)
O(nm)
O(nm)
代码
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
struct Node{
ll val;
int id;
bool operator < (const Node &t) const{
if(val != t.val) return val > t.val;
return id < t.id;
}
};
int n,m;
vector<Node> v;
ll ans[N];
priority_queue <Node> q;
int main() {
read(n),read(m);
for(int i = 1;i <= n;i++){
ll x;
read(x);
q.push({x,i});
}
while(m--){
ll x;
read(x);
if(!x) continue;
v.clear();
while(q.size() && q.top().val <= x){
v.push_back({q.top().val + x,q.top().id});
q.pop();
}
for(int i = 0;i < v.size();i++) q.push(v[i]);
}
while(q.size()){
ans[q.top().id] = q.top().val;
q.pop();
}
for(int i = 1;i <= n;i++) printf("%lld ",ans[i]);
return 0;
}
/**
* ┏┓ ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃ ┃
* ┃ ━ ┃ ++ + + +
* ████━████+
* ◥██◤ ◥██◤ +
* ┃ ┻ ┃
* ┃ ┃ + +
* ┗━┓ ┏━┛
* ┃ ┃ + + + +Code is far away from
* ┃ ┃ + bug with the animal protecting
* ┃ ┗━━━┓ 神兽保佑,代码无bug
* ┃ ┣┓
* ┃ ┏┛
* ┗┓┓┏━┳┓┏┛ + + + +
* ┃┫┫ ┃┫┫
* ┗┻┛ ┗┻┛+ + + +
*/
514

被折叠的 条评论
为什么被折叠?



