PC买礼物:DP + 拓扑排序

传送门

题目描述

在这里插入图片描述

分析

大意了啊这波,天梯赛病毒那道题随手秒到这里同样的套路就gg了
首先有向无环图,很容易想到在 D A G DAG DAG上DP处理
然后我们从后往前DP就可以了,两种情况,这个点不选,那么
f [ j ] [ p ] = ( f [ j ] [ p ] + f [ t ] [ p ] ) % m o d ; f[j][p] = (f[j][p] + f[t][p]) \% mod; f[j][p]=(f[j][p]+f[t][p])%mod;
如果这个点选,那么
f [ j ] [ p ] = ( f [ j ] [ p ] + f [ t ] [ p − a [ j ] ] ) % m o d ; f[j][p] = (f[j][p] + f[t][p - a[j]]) \% mod; f[j][p]=(f[j][p]+f[t][pa[j]])%mod;
最后在 1 1 1点统计答案即可

代码


#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e3 + 10;
const ll mod= 998244353;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a){char c=getchar();T x=0,f=1;while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}a=f*x;}
int gcd(int a,int b){return (b>0)?gcd(b,a%b):a;}
int h[N],ne[N],e[N],idx;
ll f[N][N];
int a[N];
int in[N];
int n,m,k;

void add(int x,int y){
    ne[idx] = h[x],e[idx] = y,h[x] = idx++;
}



int main(){
    memset(h,-1,sizeof h);
    read(n),read(m),read(k);
    for(int i = 1;i <= n;i++) read(a[i]);
    while(m--){
        int x,y;
        read(x),read(y);
        add(y,x);
        in[x]++;
    }
    queue<int> q;
    for(int i = 1;i <= n;i++)
        if(!in[i]){
            f[i][0] = 1;
            if(a[i] <= k) f[i][a[i]] = 1;
            q.push(i);
        }
    while(q.size()){
        int t = q.front();
        q.pop();
        for(int i = h[t];~i;i = ne[i]){
            int j = e[i];
            in[j]--;
            for(int p = k;p - a[j] >= 0;p--) f[j][p] = (f[j][p] + f[t][p - a[j]]) % mod;
            for(int p = k;p >= 0;p--) {
                f[j][p] = (f[j][p] + f[t][p]) % mod;
            }
            if(!in[j]) q.push(j);
        }
    }

    ll ans = 0;
    for(int i = 0;i <= k;i++) ans = (ans + f[1][i]) % mod;
    dl(ans);
    
}

/**
*  ┏┓   ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃       ┃
* ┃   ━   ┃ ++ + + +
*  ████━████+
*  ◥██◤ ◥██◤ +
* ┃   ┻   ┃
* ┃       ┃ + +
* ┗━┓   ┏━┛
*   ┃   ┃ + + + +Code is far away from  
*   ┃   ┃ + bug with the animal protecting
*   ┃    ┗━━━┓ 神兽保佑,代码无bug 
*   ┃        ┣┓
*    ┃        ┏┛
*     ┗┓┓┏━┳┓┏┛ + + + +
*    ┃┫┫ ┃┫┫
*    ┗┻┛ ┗┻┛+ + + +
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值