机器学习/CNN系列小问题(1):逻辑回归和神经网络之间有什么关系?

本文探讨逻辑回归(LR)与神经网络(NN)之间的联系。LR可视为单层神经网络,其激活函数通常为sigmoid。Softmax回归是多维逻辑回归,可视为单层多神经元的NN。NN的激活函数除sigmoid外,还包括tanh。虽然LR的cost函数是凸的,但多层NN的cost函数非凸,可能导致局部最小值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文讨论的关键词:Logistic Regression(逻辑回归)、Neural Networks(神经网络)

之前在学习LR和NN的时候,一直对它们独立学习思考,就简单当做是机器学习中的两个不同的models,从来没有放在一起观察过,最近通过阅读网络资料,才发现,原来LR和NN之间是有一定的联系的,了解它们之间的联系后,可以更好地理解


Logistic Regression(逻辑回归)和Neural Networks(神经网络)

  • Logistic Regression:典型的二值分类器,用来处理两类分类问题,当然,也可以用来处理多类问题,但要转换为One-vs-All或者是One-vs-One问题;Andrew Ng的机器学习课程中有对此的详细介绍
    • 专门用来进行多类分类问题的多维逻辑回归器为:
      Softmax regression / multinomial Logistic Regression;
    • 虽然逻辑回归器有许多的kernelized variants,但standard model(即最原始的LR)是一个线性分类器,主要用来处理数据集为more or less线性可分的情况;
  • Neural Networks:神经网络,由多个神经元构造,可以有多个输入、多个输出

Logistic Regression(逻辑回归)和Neural Networks(神经网络)之间到底有什么关系呢?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值