'''
mnist手写数字识别
输入:像素为【28*28】的图片
输出:数字【0-9】的预测值
隐层神经元数目:500
方法:使用滑动平均的随机梯度下降
损失函数:交叉熵加L2正则项
其它:学习率指数衰减
'''
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYRR1_NODE = 500
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEP = 5000
MOVING_AVERAGE_DECAY = 0.99
def inference(input_tensor, avg_class, w1, b1, w2, b2):
if avg_class is None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, w1)+b1)
return tf.matmul(layer1, w2)+b2
else:
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(w1)) + avg_class.average(b1))
return tf.matmul(layer1, avg_class.average(w2)) + avg_class.average(b2)
def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYRR1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYRR1_NODE]))
weights2 = tf.Variable(tf.truncated_normal([LAYRR1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
y = inference(x, None, weights1, biases1, weights2, biases2)
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variable_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y_, 1), logits=y)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
regularization = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularization
iter_times = mnist.train.num_examples / BATCH_SIZE
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, iter_times, LEARNING_RATE_DECAY)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step)
with tf.control_dependencies([train_step, variable_averages_op]):
train_op = tf.no_op(name='train')
correction_prediction = tf.equal(tf.arg_max(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correction_prediction, tf.float32))
with tf.Session() as session:
tf.initialize_all_variables().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels}
for i in range(TRAINING_STEP):
if i % 1000 == 0:
validate_acc = session.run(accuracy, feed_dict=validate_feed)
print('after training for %d steps, training accuracy is %g' % (i, validate_acc))
xs, ys = mnist.train.next_batch(BATCH_SIZE)
session.run(train_op, feed_dict={x: xs, y_: ys})
test_acc = session.run(accuracy, feed_dict=test_feed)
print('after training for %d steps, testing accuracy is %g' % (TRAINING_STEP, test_acc))
def main():
mnist = input_data.read_data_sets('resource/', one_hot=True)
train(mnist)
if __name__ == '__main__':
main()