SparkStreaming的窗口

本文介绍了SparkStreaming中的窗口函数,包括window、countByWindow、countByValueAndWindow和reduceByWindow等,强调了窗口长度和移动速率需为batch time整数倍,并指出部分操作需要设置checkpoint。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

窗口函数,就是在DStream流上,以一个可配置的长度为窗口,以一个可配置的速率向前移动窗口,根据窗口函数的具体内容,分别对当前窗口中的这一波数据采取某个对应的操作算子。
在这里插入图片描述

需要注意的是窗口长度,和窗口移动速率需要是batch time的整数倍。

1.window(windowLength, slideInterval)

该操作由一个DStream对象调用,传入一个窗口长度参数,一个窗口移动速率参数,然后将当前时刻当前长度窗口中的元素取出形成一个新的DStream。


import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object sparkWindowDemo {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf()
      .setMaster("local[*]").setAppName("demo")
	
	//采集周期batch time,指定的2秒为每次采集的时间间隔
    val streamingContext = new StreamingContext(sparkConf,Seconds(2))

    streamingContext.checkpoint("/in/checkPoint/")

    val kafkaParams = Map(
      (ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "192.168.184.40:9092"),
      (ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.GROUP_ID_CONFIG, "kafkaGroup")
    )
    
	val kafkaStream:InputDStream[ConsumerRecord[String,String]] = 
		KafkaUtils.createDirectStream(
      		streamingContext,
      		//本地策略,可用的执行器上均匀分布
      		LocationStrategies.PreferConsistent,
      		ConsumerStrategies.Subscribe(Set("sparkKafkaDemo"), kafkaParams)
    )
	
	//window窗口,可加第二个参数,参数是batch time的整数倍,滑动窗口
    //一个参数  x秒内出现几次
    //两个参数  x秒加前一窗口滑动y秒出现次数  有重复数据计算
    val numStream = kafkaStream.flatMap(_.value().toString.split("\\s+"))
      .map((_, 1)).window(Seconds(x),Seconds(y))

    numStream.print()

    streamingContext.start()

    streamingContext.awaitTermination()
  }
}

2.countByWindow(windowLength,slideInterval)

返回窗口内出现元素个数,注意:需要设置checkpoint

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}

object sparkWindow2 {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf()
      .setMaster("local[*]").setAppName("demo")

    //采集周期,指定的2秒为每次采集的时间间隔
    val streamingContext = new StreamingContext(sparkConf,Seconds(2))

    streamingContext.checkpoint("/in/checkPoint/")

    val kafkaParams = Map(
      (ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "192.168.184.40:9092"),
      (ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.GROUP_ID_CONFIG, "kafkaGroup2")
    )

    val kafkaStream:InputDStream[ConsumerRecord[String,String]] = 
      KafkaUtils.createDirectStream(
      	streamingContext,
      	//本地策略,可用的执行器上均匀分布
      	LocationStrategies.PreferConsistent,
      	ConsumerStrategies.Subscribe(Set("sparkKafkaDemo"), kafkaParams)
    )

    //countByWindow  返回指定窗口中元素个数
    val numStream = kafkaStream.flatMap(_.value().toString.split("\\s+"))
      .map((_, 1)).countByWindow(Seconds(8),Seconds(4))

    numStream.print()

    streamingContext.start()

    streamingContext.awaitTermination()
  }
}

3.countByValueAndWindow

统计窗口中元素相同的个数
注意:需要设置checkpoint

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}

object sparkWindowDemo3 {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf()
      .setMaster("local[*]").setAppName("demo")

    //采集周期,指定的2秒为每次采集的时间间隔
    val streamingContext = new StreamingContext(sparkConf,Seconds(2))

    streamingContext.checkpoint("/in/checkPoint/")

    val kafkaParams = Map(
      (ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "192.168.184.40:9092"),
      (ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.GROUP_ID_CONFIG, "kafkaGroup3")
    )

    val kafkaStream:InputDStream[ConsumerRecord[String,String]] = 
    	KafkaUtils.createDirectStream(
      		streamingContext,
      		//本地策略,可用的执行器上均匀分布
      		LocationStrategies.PreferConsistent,
      		ConsumerStrategies.Subscribe(Set("sparkKafkaDemo"), kafkaParams)
    )

    val numStream = kafkaStream.flatMap(_.value().toString.split("\\s+"))
      .countByValueAndWindow(Seconds(8),Seconds(4))

    numStream.print()

    streamingContext.start()

    streamingContext.awaitTermination()
  }
}

4.reduceByWindow(func, windowLength,slideInterval)

在调用DStream上首先取窗口函数的元素形成新的DStream,然后在窗口元素形成的DStream上进行reduce

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}


object sparkWindowDemo4 {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf()
      .setMaster("local[*]").setAppName("demo")

    //采集周期,指定的2秒为每次采集的时间间隔
    val streamingContext = new StreamingContext(sparkConf,Seconds(2))

    streamingContext.checkpoint("/in/checkPoint/")

    val kafkaParams = Map(
      (ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "192.168.184.40:9092"),
      (ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.GROUP_ID_CONFIG, "kafkaGroup4")
    )

    val kafkaStream:InputDStream[ConsumerRecord[String,String]]
    = KafkaUtils.createDirectStream(
      streamingContext,
      //本地策略,可用的执行器上均匀分布
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe(Set("sparkKafkaDemo"), kafkaParams)
    )

    val numStream = kafkaStream.flatMap(_.value().toString.split("\\s+"))
      .reduceByWindow(_+":"+_,Seconds(8),Seconds(4))

    numStream.print()

    streamingContext.start()

    streamingContext.awaitTermination()
  }
}

5.reduceByKeyAndWindow(func,windowLength, slideInterval, [numTasks])
reduceByKeyAndWindow的数据源是基于该DStream的窗口长度中的所有数据进行计算。该操作有一个可选的并发数参数。

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object sparkTransformDemo {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf()
      .setMaster("local[*]").setAppName("demo")

    //采集周期,指定的2秒为每次采集的时间间隔
    val streamingContext = new StreamingContext(sparkConf,Seconds(2))

    streamingContext.checkpoint("/in/checkPoint/")

    val kafkaParams = Map(
      (ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "192.168.184.40:9092"),
      (ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.GROUP_ID_CONFIG, "kafkaGroup5")
    )

    val kafkaStream:InputDStream[ConsumerRecord[String,String]]
    = KafkaUtils.createDirectStream(
      streamingContext,
      //本地策略,可用的执行器上均匀分布
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe(Set("sparkKafkaDemo"), kafkaParams)
    )

    val numStream: DStream[(String, Int)] = kafkaStream
      .flatMap(_.value().toString.split("\\s+")).map((_, 1))
      .reduceByKeyAndWindow((a: Int, b: Int) => a + b, (a:Int,b:Int)=>a-b ,Seconds(8), Seconds(4))

    numStream.print()

    streamingContext.start()

    streamingContext.awaitTermination()
  }
}

输出:
-------------------------------------------
Time: 1608704534000 ms
-------------------------------------------
(a,1)
-------------------------------------------
Time: 1608704538000 ms
-------------------------------------------
(a,2)
-------------------------------------------
Time: 1608704542000 ms
-------------------------------------------
(a,1)
(b,1)
-------------------------------------------
Time: 1608704546000 ms
-------------------------------------------
(a,0)
(b,2)
-------------------------------------------
Time: 1608704550000 ms
-------------------------------------------
(a,0)
(b,1)
-------------------------------------------
Time: 1608704554000 ms
-------------------------------------------
(a,0)
(b,0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值