在数论题以及一些非数论题中,经常出现递推的情况,如果找不到规律,强行迭代递推的话不是一个明智的选择,今天我就来给大家介绍一个适用于这种情形的方法——矩阵快速幂
矩阵快速幂是如何优化递推的呢?
首先,需要先构造合适的初始状态(第一个矩阵)然后,利用此矩阵和矩阵乘法的性质,使用快速幂的手段求出之后的状态
构造矩阵可以根据矩阵乘法的实现特点来构造,利用合适的性质可以简化运算
如何构造矩阵呢?
(一)f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项快速求法
考虑1×2的矩阵【f[n-2],f[n-1]】。根据Fibonacci数列的递推关系,我们可以通过乘以一个2×2的矩阵A,得到矩阵:【f[n-1],f[n]】。
即:【f[n-2],f[n-1]】*A = 【f[n-1],f[n]】=【f[n-1],f[n-1]+f[n-2]】
很容易构造出这个2×2矩阵A,即:
0 1
1 1
所以,有【f[1],f[2]】×A=【f[2],f[3]】
又因为矩阵乘法满足结合律,故有:
【f[1],f[2]】×A ^(n-1) =【f[n],f[n+1]】
这个矩阵的第一个元素f[n]即为所求。
(二)f[n]=f[n-1]+f[n-2]+1,f[1]=f[2]=1的第n项的快速求法
仿照前例,考虑1×3的矩阵【f[n-2],f[n-1],1】,希望求得某3×3的矩阵A,使得此1×3的矩阵乘以A得到矩阵:【f[n-1],f[n],1】
即:【f[n-2],f[n-1],1】* A =【f[n-1],f[n],1】=【f[n-1],f[n-1]+f[n-2]+1,1】
容易构造出这个3×3的矩阵A,即:
0 1 0
1 1 0
0 1 1
故:【f[1],f[2],1】* A^(n-1) = 【f[n],f[n+1],1】
(三)数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的第n项的快速求法
仿照前例,考虑1×4的矩阵【f[n-2],f[n-1],n,1】,希望求得某4×4的矩阵A,使得此1×4的矩阵乘以A得到矩阵:【f[n-1],f[n],n+1,1】
即:【f[n-2],f[n-1],n,1】* A = 【f[n-1],f[n],n+1,1】=【f[n-1],f[n-1]+f[n-2]+n+1,n+1,1】
容易构造出这个4×4的矩阵A,即:
0 1 0 0
1 1 0 0
0 1 1 0
0 1 1 1
故:【f[1],f[2],3,1】* A^(n-1) = 【f[n],f[n+1],n+2,1】
(四)数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的前n项和s[n]=f[1]+f[2]+……+f[n]求法
仿照之前的思路,考虑1×3的矩阵【f[n-2],f[n-1],s[n-2]】,我们希望通过乘以一个3×3的矩阵A,得到1×3的矩阵:【f[n-1],f[n],s[n-1]】
即:【f[n-2],f[n-1],s[n-2]】 * A = 【f[n-1],f[n],s[n-1]】=【f[n-1],f[n-1]+f[n-2],s[n-2]+f[n-1]】
容易得到这个3×3的矩阵A是:
0 1 0
1 1 1
0 0 1
这种方法的矩阵规模是(r+1)*(r+1)
f(1)=f(2)=s(1)=1 ,所以,有【f(1),f(2),s(1)】* A = 【f(2),f(3),s(2)】
故:【f(1),f(2),s(1)】* A^(n-1) = 【f(n),f(n+1),s(n)】
(五)数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的前n项和s[n]=f[1]+f[2]+……+f[n]求法
考虑1×5的矩阵【f[n-2],f[n-1],s[n-2],n,1】
我们需要找到一个5×5的矩阵A,使得它乘以A得到如下1×5的矩阵【f[n-1],f[n],s[n-1],n+1,1】
即:【f[n-2],f[n-1],s[n-2],n,1】* A =【f[n-1],f[n],s[n-1],n+1,1】=【f[n-1], f[n-1]+f[n-2]+n+1,s[n-2]+f[n-1],n+1,1】
容易构造出A为:
0 1 0 0 0
1 1 1 0 0
0 0 1 0 0
0 1 0 1 0
0 1 0 1 1
故:【f(1),f(2),s(1),3,1】* A^(n-1) = 【f(n),f(n+1),s(n),n+2,1】
(六)f[n]=p*f[n-1]+q*f[n-2]+r*n+s
可以构造矩阵A为:
0 q 0 0 0
1 p 1 0 0
0 0 1 0 0
0 r 0 1 0
0 s 0 1 1
(七)f[n]=Sigma(a[n-i]*f[n-i])+Poly(n)
其中0<i<=某常数c, Poly (n)表示n的多项式,我们依然可以构造类似的矩阵A来解决问题。
设Degree(Poly(n))=d, 并规定Poly(n)=0时,d=-1,此时对应于常系数线性齐次递推关系。则本方法求前n项和的复杂度为:((c+1)+(d+1))3*logns
例如:A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2);
给定三个值N,X,Y求S(N):S(N) = A(0)2 +A(1)2+……+A(n)2。
解:
考虑1*4 的矩阵【s[n-2],a[n-1]^2,a[n-2]^2,a[n-1]*a[n-2]】
我们需要找到一个4×4的矩阵A,使得它乘以A得到1×4的矩阵
【s[n-1],a[n]^2,a[n-1]^2,a[n]*a[n-1]】
即:【s[n-2],a[n-1]^2,a[n-2]^2,a[n-1]*a[n-2]】* A = 【s[n-1],a[n]^2,a[n-1]^2,a[n]*a[n-1]】= 【s[n-2]+a[n-1]^2 , x^2 * a[n-1]^2 + y^2 * a[n-2]^2 + 2*x*y*a[n-1]*a[n-2],a[n-1]^2 , x*a[n-1]^2 + y*a[n-2]a[n-1]】
可以构造矩阵A为:
1 0 0 0
1 x^2 1 x
0 y^2 0 0
0 2xy 0 y
故:【S[0],a[1]^2,a[0]^2,a[1]*a[0]】 * A^(n-1) = 【s[n-1],a[n]^2,a[n-1]^2,a[n]*a[n-1]】
所以:【S[0],a[1]^2,a[0]^2,a[1]*a[0]】 * A^(n) = 【s[n],a[n+1]^2,a[n]^2,a[n+1]*a[n]】
若A = (B * C ) 则AT = ( B * C )T = CT * BT
故可得如下图所示的矩阵
构造完矩阵如何得到答案呢?
这里,矩阵快速幂,和数字的快速幂算法是一样的,只是把数字换成了矩阵而已,矩阵的乘法线性代数应该都学过,这里不再赘述,下面是我写的矩阵快速幂代码实现
const int MAXN = 15;//最大294
const int mod = 10000007;
//矩阵定义
struct Matrix{
__int64 a[MAXN][MAXN];
int r;//行数
int c;//列数
};
//输出测试函数
void print(Matrix mat){
for(int i=0;i<mat.r;i++){
for(int j=0;j<mat.c;j++){
if(j) cout<<" ";
cout<<mat.a[i][j];
}
cout<<endl;
}
cout<<endl;
}
//矩阵初始化
void init(Matrix &mat, __int64 n){
for (int i = 0;i < mat.r;i++){
for (int j = 0;j < mat.c;j++){
mat.a[i][j] = n;
}
}
}
//矩阵乘法
Matrix mul(Matrix mat1, Matrix mat2){
Matrix res;
res.c = mat2.c;
res.r = mat1.r;
init(res, 0);
for (int i = 0;i < mat1.r;i++){
for (int j = 0;j < mat2.c;j++){
for (int k = 0;k < mat1.c;k++){
res.a[i][j] += mat1.a[i][k] * mat2.a[k][j];
res.a[i][j] %= mod;
}
}
}
return res;
}
//矩阵快速幂
Matrix fmp(Matrix ans,__int64 n){
Matrix base;
base.c=base.r=ans.r;
init(base,0);
for(int i=0;i<base.r;i++){
base.a[i][i]=1;
}
while (n){
if (n & 1) base = mul(base, ans);
ans = mul(ans, ans);
n >>= 1;
}
return base;
}