Function
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 1353 Accepted Submission(s): 623
Define that the domain of function f is the set of integers from 0 to n−1 , and the range of it is the set of integers from 0 to m−1 .
Please calculate the quantity of different functions f satisfying that f(i)=bf(ai) for each i from 0 to n−1 .
Two functions are different if and only if there exists at least one integer from 0 to n−1 mapped into different integers in these two functions.
The answer may be too large, so please output it in modulo 109+7 .
For each case:
The first line contains two numbers n, m . (1≤n≤100000,1≤m≤100000)
The second line contains n numbers, ranged from 0 to n−1 , the i -th number of which represents ai−1 .
The third line contains m numbers, ranged from 0 to m−1 , the i -th number of which represents bi−1 .
It is guaranteed that ∑n≤106, ∑m≤106 .
3 2 1 0 2 0 1 3 4 2 0 1 0 2 3 1
Case #1: 4 Case #2: 4
2017 Multi-University Training Contest - Team 1
题意:给出两个排列,a和b,求满足映射的f[i]=b_f[a[i]]的个数。
其实相当于排列b也是一个映射,把两个映射转化成两个图。
因为是1-n的排列,所以根据映射关系组成的一定是一个一个的环。
为了将f的映射和b的对应起来,对于f中的每个环,当b中的环的长度为f中的环的因数时,则可以匹配。最后再组合一下答案即可。
ac代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + 5;
const int mod = 1e9+7;
int n, m;
int a[maxn], b[maxn];
int vis[maxn];
vector<int> A;
vector<int> B;
int main()
{
//freopen("in.txt","r",stdin);
int kase=0;
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<n;i++) scanf("%d",&a[i]);
for(int i=0;i<m;i++) scanf("%d",&b[i]);
A.clear();
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
{
int cur=i,cnt=1;
if(!vis[i])
{
vis[i]=1;
while(a[cur]!=i)
{
cur=a[cur];
vis[cur]=1;
cnt++;
}
A.push_back(cnt);
}
}
B.clear();
memset(vis,0,sizeof(vis));
for(int i=0;i<m;i++)
{
int cur=i, cnt=1;
if(!vis[i])
{
vis[i]=1;
while(b[cur]!=i)
{
cur=b[cur];
vis[cur]=1;
cnt++;
}
B.push_back(cnt);
}
}
ll ans=1;
for(int i=0;i<A.size();i++)
{
ll tmp=0;
for(int j=0;j<B.size();j++)
{
if(A[i]%B[j]==0) tmp=(tmp+B[j])%mod;
}
ans=ans*tmp%mod;
}
printf("Case #%d: %d\n",++kase,ans);
}
return 0;
}