1021. Deepest Root (25)

本文介绍了一种使用深度优先搜索(DFS)算法来遍历树形结构并找出具有最大深度节点的方法。该算法适用于解决图论中的问题,特别是当需要找到离根节点最远的叶节点时。通过两次DFS遍历,首先确定连通块的数量,然后寻找每个连通块中最深的叶节点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
using namespace std;

const int maxn = 10010;
int deepest = 0;
vector<int> city[maxn];
int deep_r[maxn], p = 0;

bool visit[maxn] = {false};

bool visit1[maxn] = {false};

void DFS(int root) {
	visit[root] = true;
	for (int i = 0; i < city[root].size(); i++) {
		if (visit[city[root][i]]) continue;
		DFS(city[root][i]); 
	}
}

void DFS(int root, int level) {
	visit[root] = true;
	bool flag = false;
	for (int i = 0; i < city[root].size(); i++) {
		if (visit[city[root][i]]) continue;
		DFS(city[root][i], level + 1);
		flag = true;
	}
	if (flag == false) {
		if (level > deepest) {
			deepest = level;
			p = 0;
			memset(visit1, false, sizeof(visit1));
		}
		if (level == deepest && visit1[root] == false) {
			deep_r[p++] = root;
			visit1[root] = true;
		}
	}
}

int main() {
	int n;
	scanf("%d", &n);
	int c1, c2;
	for (int i = 1; i < n; i++) {
		scanf("%d%d", &c1, &c2);
		city[c1].push_back(c2);
		city[c2].push_back(c1);
	}
	
	int block = 0;
	for (int i = 1; i <= n; i++) {
		if (visit[i] == false) {
			block++;
			DFS(i);
		}
	}
	
	if (block > 1) {
		printf("Error: %d components\n", block);
	} else {
		for (int i = 1; i <= n; i++) {
			memset(visit, false, sizeof(visit));
			DFS(i, 0);
		}
		sort(deep_r, deep_r + p);
		for (int i = 0; i != p; i++) {
			printf("%d\n", deep_r[i]);
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值