大数据面试题-Hadoop框架调优

本文详细介绍了Hadoop框架的优化方法,包括从应用程序层面避免不必要的reduce任务、使用适合的Writable类型、重用对象以减少垃圾回收,以及通过调整Hadoop参数、Linux内核参数和系统配置来提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hadoop框架怎么来优化?

1 从应用程序角度进行优化。由于mapreduce是迭代逐行解析数据文件的,怎样在迭代的情况下,编写高效率的应用程序,是一种优化思路。

2 对Hadoop参数进行调优。当前hadoop系统有190多个配置参数,怎样调整这些参数,使hadoop作业运行尽可能的快,也是一种优化思路。

3 从系统实现角度进行优化。这种优化难度是最大的,它是从hadoop实现机制角度,发现当前Hadoop设计和实现上的缺点,然后进行源码级地修改。该方法虽难度大,但往往效果明显。

4 linux内核参数调整

 

从应用程序角度进行优化

(1) 避免不必要的reduce任务

如果mapreduce程序中reduce是不必要的,那么我们可以在map中处理数据, Reducer设置为0。这样避免了多余的reduce任务。

(2) 为job添加一个Combiner

为job添加一个combiner可以大大减少shuffle阶段从map task拷贝给远程reduce task的数据量。一般而言,combiner与reducer相同。

(3) 根据处理数据特征使用最适合和简洁的Writable类型

Text对象使用起来很方便,但它在由数值转换到文本或是由UTF8字符串转换到文本时都是低效的,且会消耗大量的CPU时间。当处理那些非文本的数据时,可以使用二进制的Writable类型,如IntWritable, FloatWritable等。二进制writable好处:避免文件转换的消耗;使map task中间结果占用更少的空间。

(4) 重用Writable类型

很多MapReduce用户常犯的一个错误是,在一个map/reduce方法中为每个输出都创建Writable对象。例如,你的Wordcount mapper方法可能这样写:

public void map(...) {

  …

  for (String word : words) {

    output.collect(new Text(word), new IntWritable(1));

  }

}

这样会导致程序分配出成千上万个短周期的对象。Java垃圾收集器就要为此做很多的工作。更有效的写法是:

class MyMapper … {

  Text wordText = new Text();

  IntWritable one = new IntWritable(1);

  public void map(...) {

    for (String word: words) {

      wordText.set(word);

      output.collect(wordText, one);

    }

  }

}

(5) 使用StringBuffer而不是String

当需要对字符串进行操作时,使用StringBuffer而不是String,String是read-only的,如果对它进行修改,会产生临时对象,而StringBuffer是可修改的,不会产生临时对象。

 

​​​​​​​2 对参数进行调优

查看linux的服务,可以关闭不必要的服务

ntsysv

停止打印服务

#/etc/init.d/cups stop

#chkconfig cups off

关闭ipv6

#vim /etc/modprobe.conf

添加内容

alias net-pf-10 off

alias ipv6 off

 

调整文件最大打开数

查看: ulimit -a    结果:open files (-n) 1024

临时修改: ulimit -n 4096

持久修改:

vi /etc/security/limits.conf在文件最后加上:

* soft nofile 65535
* hard nofile 65535
* soft nproc 65535
* hard nproc 65535

修改linux内核参数

vi /etc/sysctl.conf

添加

net.core.somaxconn = 32768

#web应用中listen函数的backlog默认会给我们内核参数的net.core.somaxconn限制到128,而nginx定义的NGX_LISTEN_BACKLOG默认为511,所以有必要调整这个值。

调整swap分区什么时候使用:

查看:cat /proc/sys/vm/swappiness

设置:vi /etc/sysctl.conf 

            在这个文档的最后加上这样一行: vm.swappiness=10

            表示物理内存使用到90%(100-10=90)的时候才使用swap交换区

关闭noatime

vi /etc/fstab

/dev/sda2    /data     ext3  noatime,nodiratime  0 0

设置readahead buffer

blockdev --setra READAHEAD 512 /dev/sda

 

 

以下是修改mapred-site.xml文件

修改最大槽位数

槽位数是在各个tasktracker上的mapred-site.xml上设置的,默认都是2

<property>  

            <name>mapred.tasktracker.map.tasks.maximum</name>  #++++maptask的最大数

            <value>2</value>  

        </property>                  

     <property>  

            <name>mapred.tasktracker.reduce.tasks.maximum</name>  #++++reducetask的最大数

                <value>2</value>  

      </property>  

调整心跳间隔

集群规模小于300时,心跳间隔为300毫秒

mapreduce.jobtracker.heartbeat.interval.min  心跳时间

mapred.heartbeats.in.second  集群每增加多少节点,时间增加下面的值

mapreduce.jobtracker.heartbeat.scaling.factor 集群每增加上面的个数,心跳增多少

启动带外心跳

mapreduce.tasktracker.outofband.heartbeat  默认是false

配置多块磁盘

mapreduce.local.dir

配置RPC hander数目

mapred.job.tracker.handler.count 默认是10,可以改成50,根据机器的能力

配置HTTP线程数目

tasktracker.http.threads  默认是40,可以改成100 根据机器的能力

选择合适的压缩方式

以snappy为例:

<property>  

            <name>mapred.compress.map.output</name>

            <value>true</value>  

        </property>                  

     <property>  

            <name>mapred.map.output.compression.codec</name> 

                <value>org.apache.hadoop.io.compress.SnappyCodec</value>  

      </property>  

启用推测执行机制

推测执行(Speculative Execution)是指在分布式集群环境下,因为程序BUG,负载不均衡或者资源分布不均等原因,造成同一个job的多个task运行速度不一致,有的task运行速度明显慢于其他task(比如:一个job的某个task进度只有10%,而其他所有task已经运行完毕),则这些task拖慢了作业的整体执行进度,为了避免这种情况发生,Hadoop会为该task启动备份任务,让该speculative task与原始task同时处理一份数据,哪个先运行完,则将谁的结果作为最终结果。

推测执行优化机制采用了典型的以空间换时间的优化策略,它同时启动多个相同task(备份任务)处理相同的数据块,哪个完成的早,则采用哪个task的结果,这样可防止拖后腿Task任务出现,进而提高作业计算速度,但是,这样却会占用更多的资源,在集群资源紧缺的情况下,设计合理的推测执行机制可在多用少量资源情况下,减少大作业的计算时间。

mapred.map.tasks.speculative.execution  默认是true

mapred.rduce.tasks.speculative.execution  默认是true

设置是失败容忍度

mapred.max.map.failures.percent   作业允许失败的map最大比例  默认值0,即0%

mapred.max.reduce.failures.percent  作业允许失败的reduce最大比例  默认值0,即0%

mapred.map.max.attemps  失败后最多重新尝试的次数 默认是4

mapred.reduce.max.attemps  失败后最多重新尝试的次数 默认是4

启动jvm重用功能

mapred.job.reuse.jvm.num.tasks  默认值1,表示只能启动一个task,若为-1,表示可以最多运行数不限制

设置任务超时时间

mapred.task.timeout  默认值600000毫秒,也就是10分钟。

合理的控制reduce的启动时间

mapred.reduce.slowstart.completed.maps  默认值0.05  表示map任务完成5%时,开始启动reduce任务

跳过坏记录

 当任务失败次数达到该值时,才会进入skip mode,即启用跳过坏记录数功能,也就是先试几次,不行就跳过

mapred.skip.attempts.to.start.skipping 默认值 2

map最多允许跳过的记录数

mapred.skip.map.max.skip.records 默认值0,为不启用

reduce最多允许跳过的记录数

mapred.skip.reduce.max.skip.records 默认值0,为不启用

换记录存放的目录

mapred.skip.out.dir  默认值${mapred.output.dir}/_logs/ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值