Diffusion of innovations(创新扩散)


创新扩散理论, 美国学者Rogers提出的关于推广传播新观点新技术的理论。


创新扩散,会经历五个阶段: Knowledge, Persuasion, Decision, Implementation, Confirmation:


Stage Definition
Knowledge    In this stage the individual is first exposed to an innovation but lacks information about the innovation. During this stage of the process the individual has not been inspired to find more information about the innovation.
PersuasionIn this stage the individual is interested in the innovation and actively seeks information/detail about the innovation.
DecisionIn this stage the individual takes the concept of the change and weighs the advantages/disadvantages of using the innovation and decides whether to adopt or reject the innovation. Due to the individualistic nature of this stage Rogers notes that it is the most difficult stage to acquire empirical evidence (Rogers 1964, p. 83).
ImplementationIn this stage the individual employs the innovation to a varying degree depending on the situation. During this stage the individual determines the usefulness of the innovation and may search for further information about it.
ConfirmationIn this stage the individual finalizes his/her decision to continue using the innovation. This stage is both intrapersonal (may cause cognitive dissonance) and interpersonal, confirmation the group has made the right decision.

而在这个过程中, 创新扩散的对象, Rogers划分为5类: Innovators, Early adopters, Early Majority, Late Majority, Laggards.

Adopter category Definition
InnovatorsInnovators are the first individuals to adopt an innovation. Innovators are willing to take risks, youngest in age, have the highest social class, have great financial liquidity, are very social and have closest contact to scientific sources and interaction with other innovators. Risk tolerance has them adopting technologies which may ultimately fail. Financial resources help absorb these failures. (Rogers 1962 5th ed, p. 282)
Early adoptersThis is the second fastest category of individuals who adopt an innovation. These individuals have the highest degree of opinion leadership among the other adopter categories. Early adopters are typically younger in age, have a higher social status, have more financial liquidity, advanced education, and are more socially forward than late adopters. More discrete in adoption choices than innovators. Realize judicious choice of adoption will help them maintain central communication position (Rogers 1962 5th ed, p. 283).
Early MajorityIndividuals in this category adopt an innovation after a varying degree of time. This time of adoption is significantly longer than the innovators and early adopters. Early Majority tend to be slower in the adoption process, have above average social status, contact with early adopters, and seldom hold positions of opinion leadership in a system (Rogers 1962 5th ed, p. 283)
Late MajorityIndividuals in this category will adopt an innovation after the average member of the society. These individuals approach an innovation with a high degree of skepticism and after the majority of society has adopted the innovation. Late Majority are typically skeptical about an innovation, have below average social status, very little financial liquidity, in contact with others in late majority and early majority, very little opinion leadership.
LaggardsIndividuals in this category are the last to adopt an innovation. Unlike some of the previous categories, individuals in this category show little to no opinion leadership. These individuals typically have an aversion to change-agents and tend to be advanced in age. Laggards typically tend to be focused on "traditions", likely to have lowest social status, lowest financial liquidity, be oldest of all other adopters, in contact with only family and close friends.

在传播早期, 采用者很少, 进展很缓慢。 但采用者比例扩大到10% - 25%时, 进展开始加速;等到了饱和期之后, 增长空间变小, 趋势变得缓和。

The diffusion of innovations according to Rogers. With successive groups of consumers adopting the new technology (shown in blue), its market share (yellow) will eventually reach the saturation level. In mathematics the S curve is known as the  logistic function .

整个创新扩散能否成功, 关键在于能否从早期市场(Innovators, Early adopters)跨越到主流市场(Early Majority, Late Majority), 这是成败的关键。Rogers 认为影响创新能否成功被采纳接受的关键因素为: Reletive Advantage(相对优越性), Compatibility(兼容性), Complexity or Simplicity(复杂性), Trialability(可试用性), Observability(可观察性)

Factor Definition
Relative AdvantageHow improved an innovation is over the previous generation.
CompatibilityThe level of compatibility that an innovation has to be assimilated into an individual’s life.
Complexity or SimplicityIf the innovation is perceived as complicated or difficult to use, an individual is unlikely to adopt it.
TrialabilityHow easily an innovation may be experimented. If a user is able to test an innovation, the individual will be more likely to adopt it.
ObservabilityThe extent that an innovation is visible to others. An innovation that is more visible will drive communication among the individual’s peers and personal networks and will in turn create more positive or negative reactions.

参考文献

        - http://en.wikipedia.org/wiki/Diffusion_of_innovations

<think>嗯,用户想了解StableDiffusion扩散模型的基本情况和使用方法,还特别提到了下载需求。从对话历史看,用户应该是个刚入门的新手,可能想本地部署体验AI绘画。用户引用的资料很有价值:引用1是秋叶整合包的安装教程,这对Windows用户特别友好;引用2和4解释了扩散模型的原理,引用3则提到技术发展史。不过用户可能更需要实操指导而非理论推导,上次我的回复已经覆盖了安装使用全流程,这次可以更精简。用户问题有三个关键词:介绍、使用、下载。需要结构化回应:1)介绍部分要通俗,避免公式轰炸。重点说“图像通过逐步加噪/去噪生成”这个核心思想,引用2提到的扩散过程是重点。2)下载要区分模型类型,强调检查点模型和微调模型的用途差异,提醒用户注意文件大小(单个模型通常2-7GB)。3)使用指南优先推荐WebUI交互,这是新手最易上手的方案。命令行的CUDA设置对非开发者不友好。安全提醒必须包含:版权风险(不要商用未授权作品)和显存要求(4GB是底线,8GB才流畅)。用户可能用家用电脑尝试,显存不足会导致生成失败。上次回复的问答数据依然有效,相关插件推荐保持原样——ControlNet和LoRA是生产力核心组件,提示词优化工具则是创作刚需。</think> 以下是关于Stable Diffusion扩散模型的综合指南,涵盖原理、安装、使用及下载资源: --- ### **一、Stable Diffusion简介** #### 1. 核心原理 - **扩散模型本质**:通过模拟图像从噪声到清晰图的逆向过程生成新图像(引用[2])。 - **加噪过程**:对真实图像逐步添加高斯噪声,直至变成纯噪声。公式推导: $$x_t = \sqrt{\alpha_t} \cdot x_{t-1} + \sqrt{1-\alpha_t} \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$ - **去噪过程**:训练神经网络(UNet)预测每一步的噪声 $\epsilon_\theta$,逐步还原图像。 - **关键创新**:引入**潜在空间扩散**(Latent Diffusion),在压缩后的低维空间操作,大幅降低计算成本(引用[4])。 #### 2. 技术优势 - 生成质量高,支持文本/图像双模态输入 - 开源生态完善,支持自定义训练 - 可在消费级GPU(≥4GB显存)运行 --- ### **二、本地安装与部署(Windows)** #### 1. **推荐方案:秋叶整合包** > **特点**:一键安装,内置中文界面、常用插件和模型管理工具(引用[1])。 - **下载地址**:[整合包下载页](https://www.bilibili.com/video/BV1iM4y1y7oA/)(B站资源,含详细教程) - **安装步骤**: 1. 解压压缩包至英文路径 2. 双击`启动器.exe` 3. 点击“一键启动” → 自动打开WebUI界面(`http://127.0.0.1:7860`) #### 2. 系统要求 | 组件 | 最低配置 | 推荐配置 | |------------|----------------|------------------| | GPU | NVIDIA 4GB显存 | RTX 3060及以上 | | 内存 | 8GB | 16GB | | 硬盘空间 | 10GB | 50GB(模型存储) | --- ### **三、模型下载与使用** #### 1. **主流模型推荐** | 模型类型 | 用途 | 下载地址 | |----------------|--------------------------|------------------------------------------| | **基础模型** | 通用图像生成 | [Hugging Face Hub](https://huggingface.co/CompVis/stable-diffusion-v1-5) | | **微调模型** | 风格化输出(动漫、写实等)| [Civitai](https://civitai.com/) | | **LoRA模型** | 局部特征控制(服装、画风)| [LibLibAI](https://www.liblibai.com/) | #### 2. 模型安装步骤 1. 下载`.ckpt`或`.safetensors`文件 2. 放入路径:`stable-diffusion-webui/models/Stable-diffusion` 3. 在WebUI左上角切换模型 --- ### **四、基础使用指南** 1. **文本生成图像**: - **正向提示词**:`masterpiece, (detailed eyes), ...` - **反向提示词**:`blurry, low quality, ...` - 调整参数:采样步数(20-30)、图像尺寸(512×512) 2. **进阶功能**: - **Img2Img**:基于草图/照片生成新图 - **Inpainting**:局部重绘(擦除后修改区域) - **ControlNet**:精确控制构图(需单独安装插件) --- ### **五、常见问题解决** - **显存不足**:启用`--medvram`启动参数,或使用TensorRT优化 - **生成速度慢**:选择较小模型(如SDXL-Turbo),启用xFormers加速 - **图像扭曲**:添加负面提示词`deformed, mutated` --- ### **
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值