之前有写过一篇关于人脸40属性识别的深度学习神经网络(Pytorch实现人脸多属性识别),感兴趣的小伙伴可以去看一下,这次主要是对上一篇博客的另一种补充实现方法。
依然是这个数据集——CalebA人脸数据集(官网链接)是香港中文大学的开放数据
关于是哪四十种属性,小伙伴可以参考下面这个链接:CelebA 40 种属性
在上篇博客中使用的是每种属性单独用一个网络去识别,不同属性之间权值互不影响,整体的思路如下:
将图片经过预处理之后,依次送入到40个网络中分别识别不同的属性,然后输出结果,整个网络的可解释性比较强,拟合效果也很好,准确率相对较高。因为上一篇博客已经介绍的很详细了,这里就不多做介绍了。
既然可以用40个网络识别40个属性,那么是否也可以用1个网络识别40个属性?答案是可以的!
整个网络的思路如下:
将图片输入到一个网络中,然后网络的卷积层的参数共享,通过不同的全连接层输出40种属性。因为是使用1个网络,所以可以适当增加网络深度以提高拟合的效果,但是过深的网络会导致梯度弥散或者爆炸,导致精度降低,使用Resnet网络可以很好的避免这种情况发生,所以我重写了一个Resnet50的网络以实现上述输出40个结果的网络,代码如下:
# -*- coding:utf-8 -*-
import torch
import torch.nn as nn
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc_list40 = [nn.Linear(512 * block.expansion, 2)]*40 #将卷积的结果输入到40个fc层,如果在这一行报错的话可以选择直接写40个self.fc= nn.Linear(512 * block.expansion, 2),加上编号,例如fc0,fc1...fc39,我本人的代码实现中是这么写的,这里是为了减少代码的行数所修改了一下,暂时没尝试训练是否会报错。没有GPU太痛苦!
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
#x = self.fc(x)
out_list = []
for i in range(40):
out_list.append(self.fc_list40[i](x))
return out_list
只需要将上面的代码替换掉上一篇人脸属性识别中module的部分即可开始训练网络了
欢迎分享和留言。
分享请注明出处。