POJ 1657 解题报告

本文介绍了一种使用广度优先搜索(BFS)算法来解决棋盘上不同棋子从一个位置移动到另一个位置所需的最少步数的问题。具体考虑了国王、皇后、车和象四种棋子的移动方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BFS简单题。

thestoryofsnow1657Accepted156K0MSC++3173B
/* 
ID: thestor1 
LANG: C++ 
TASK: poj1657 
*/
#include <iostream>
#include <fstream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <limits>
#include <string>
#include <vector>
#include <list>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <algorithm>
#include <cassert>

using namespace std;

int kdirections[8][2] = {{1, -1}, {1, 0}, {1, 1}, {0, -1}, {0, 1}, {-1, -1}, {-1, 0}, {-1, 1}};
int rdirections[4][2] = {{1, 0}, {0, -1}, {0, 1}, {-1, 0}};
int bdirections[4][2] = {{1, -1}, {1, 1}, {-1, -1}, {-1, 1}};

bool isInBorder(int nr, int nc)
{
	return 0 <= nr && nr < 8 && 0 <= nc && nc < 8;
}

std::vector<pair<int, int> > neighbours(const int r, const int c, int type, const int steps[][8])
{
	std::vector<pair<int, int> > nbs;
	// king
	if (type == 0)
	{
		for (int i = 0; i < 8; ++i)
		{
			int nr = r + kdirections[i][0], nc = c + kdirections[i][1];
			if (isInBorder(nr, nc) && steps[nr][nc] < 0)
			{
				nbs.push_back(make_pair(nr, nc));
			}
		}
	}
	// queen
	else if (type == 1)
	{
		for (int i = 0; i < 8; ++i)
		{
			int nr = r + kdirections[i][0], nc = c + kdirections[i][1];
			while (isInBorder(nr, nc) && steps[nr][nc] < 0)
			{
				nbs.push_back(make_pair(nr, nc));
				nr += kdirections[i][0], nc += kdirections[i][1];
			}
		}
	}
	// rook
	else if (type == 2)
	{
		for (int i = 0; i < 4; ++i)
		{
			int nr = r + rdirections[i][0], nc = c + rdirections[i][1];
			while (isInBorder(nr, nc) && steps[nr][nc] < 0)
			{
				nbs.push_back(make_pair(nr, nc));
				nr += rdirections[i][0], nc += rdirections[i][1];
			}
		}
	}
	// Bishop
	else
	{
		assert(type == 3);
		for (int i = 0; i < 4; ++i)
		{
			int nr = r + bdirections[i][0], nc = c + bdirections[i][1];
			while (isInBorder(nr, nc) && steps[nr][nc] < 0)
			{
				nbs.push_back(make_pair(nr, nc));
				nr += bdirections[i][0], nc += bdirections[i][1];
			}
		}
	}

	return nbs;
}

int main()
{
	int T;	
	scanf("%d", &T);

	int steps[8][8];

	for (int t = 0; t < T; ++t)
	{
		char r1c, r2c;
		int r1, c1, r2, c2;
		scanf(" %c%d %c%d", &r1c, &c1, &r2c, &c2);
		r1 = r1c - 'a', r2 = r2c - 'a';
		c1--, c2--;

		// (r1, c1), (r2, c2)
		const pair<int, int> dest = make_pair(r2, c2);

		for (int type = 0; type < 4; ++type)
		{
			queue<pair<int, int> > que;
			que.push(make_pair(r1, c1));
			memset(steps, -1, 8 * 8 * sizeof(int));
			steps[r1][c1] = 0;

			while (!que.empty())
			{
				pair<int, int> pos = que.front();
				que.pop();

				if (pos == dest)
				{
					break;
				}

				int r = pos.first, c = pos.second;
				int step = steps[r][c];

				std::vector<pair<int, int> > nbs = neighbours(r, c, type, steps);
				for (int i = 0; i < nbs.size(); ++i)
				{
					int nr = nbs[i].first, nc = nbs[i].second;
					steps[nr][nc] = step + 1;
					que.push(nbs[i]);
				}
			}

			if (steps[r2][c2] >= 0)
			{
				printf("%d", steps[r2][c2]);
			}
			else
			{
				printf("Inf");
			}

			if (type != 3)
			{
				printf(" ");
			}
			else
			{
				printf("\n");
			}
		}

	}
	return 0;  
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值