
Flink简介
Apache Flink是一个分布式大数据处理引擎,可对有限数据流和无限数据流进行有状态或无状态的计算,能够不上在各种集群环境,对各种规模大小的数据进行快速计算。
Flink 是一个分布式的流处理框架,它能够对有界和无界的数据流进行高效的处理。Flink 的核心是流处理,当然它也能支持批处理,Flink 将批处理看成是流处理的一种特殊情况,即数据流是有明确界限的。
与spark对比,flink和 Spark Streaming 的思想是完全相反的,Spark Streaming 的核心是批处理,它将流处理看成是批处理的一种特殊情况, 即把数据流进行极小粒度的拆分,拆分为多个微批处理,并不能完美且高效地处理原生的数据流,因此对流式计算支持的相对较弱。
Flink起源
Apache Flink 诞生于柏林工业大学的一个研究性项目,原名 StratoSphere 。2014 年,由 StratoSphere 项目孵化出 Flink,并于同年捐赠 Apache,之后成为 Apache 的顶级项目。2019 年 1 年,阿里巴巴收购了 Flink 的母公司 Data Artisans,并宣布开源内部的 Blink,Blink 是阿里巴巴基于 Flink 优化后的版本,增加了大量的新功能,并在性能和稳定性上进行了各种优化,经历过阿里内部多种复杂业务的挑战和检验。同时阿里巴巴也表示会逐步将这些新功能和特性 Merge 回社区版本的 Flink 中,因此 Flink 成为目前最为火热的大数据处理框架。
Flink 有界数据流和无界数据流:
Spark Streaming 数据流的拆分:
Flink生态组件
Flink 采用分层的架构设计,从而保证各层在功能和职责上的清晰。如下图所示,由上而下分别是 API & Libraries 层、Runtime 核心层以及物理部署层:
-
API & Libraries 层
这一层主要提供了编程 API 和 顶层类库:
· 编程 API : 用于进行流处理的 DataStream API 和用于进行批处理的 DataSet API;
· 顶层类库:包括用于复杂事件处理的 CEP 库;用于结构化数据查询的 SQL & Table 库,以及基于批处理的机器学习库 FlinkML 和 图形处理库 Gelly。
-
Runtime 核心层
这一层是 Flink 分布式计算框架的核心实现层,包括作业转换,任务调度,资源分配,任务执行等功能,基于这一层的实现,可以在流式引擎下同时运行流处理程序和批处理程序。
-
物理部署层
Flink 的物理部署层,用于支持在不同平台上部署运行 Flink 应用。
Flink分层API
在上面介绍的 API & Libraries 这一层,Flink 又进行了更为具体的划分。具体如下:
按照如上的层次结构,API 的一致性由下至上依次递增,接口的表现能力由下至上依次递减,各层的核心功能如下:
3.1 SQL & Table API
SQL & Table API 同时适用于批处理和流处理,这意味着你可以对有界数据流和无界数据流以相同的语义进行查询,并产生相同的结果。除了基本查询外, 它还支持自定义的标量函数,聚合函数以及表值函数,可以满足多样化的查询需求。
3.2 DataStream & DataSet API
DataStream & DataSet API 是 Flink 数据处理的核心 API,支持使用 Java 语言或 Scala 语言进行调用,提供了数据读取,数据转换和数据输出等一系列常用操作的封装。
3.3 Stateful Stream Processing
Stateful Stream Processing 是最低级别的抽象,它通过 Process Function 函数内嵌到 DataStream API 中。Process Function 是 Flink 提供的最底层 API,具有最大的灵活性,允许开发者对于时间和状态进行细粒度的控制。