pytorch实现猫狗分类 可以替换数据集

本文介绍基于PyTorch的猫狗分类,可替换数据集imagefolder的root和网络模型最后一层。作者刚开始学习深度学习,采用AlexNet模型结构,程序存在不合理之处,分享了训练和预测部分内容,希望得到大佬指导并与人交流学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于pytorch的猫狗分类 可以替换自己的数据集imagefolder的root和网络模型的最后一层就行

刚刚开始学习dl,模型结构是学习的alexnet,程序有很多不合理的地方,希望大佬们可以指导下!

也希望能有bro来一起交流学习下!

训练部分

import torchvision.datasets
import torch
from torch import nn, tensor
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score


#transform
data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                 transforms.RandomHorizontalFlip(),
                                 transforms.ToTensor(),
                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
    "test": transforms.Compose([transforms.Resize((224, 224)),
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

# 准备数据集
# train_data = torchvision.datasets.CIFAR10(root="../CIFAR10", train=True, transform=data_transform["train"], download=True)
# test_data = torchvision.datasets.CIFAR10(root="../CIFAR10", train=False, transform=data_transform["test"], download=True)
# 使用自己的数据集
train_data = torchvision.datasets.ImageFolder(root=r"E:\work\Dog_Cat_Dataset\train", transform =data_transform["train"])
test_data = torchvision.datasets.ImageFolder(root=r"E:\work\Dog_Cat_Dataset\test", transform = data_transform["test"])

# 利用dataloader来加载数据集
traindata = DataLoader(train_data, batch_size=64, shuffle=True)
testdata = DataLoader(test_data, batch_size=64, shuffle=True)

# 搭建神经网络  输入 [3,224,224]
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=7, stride=3, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=128*9*9, out_features=1024),
            nn.ReLU(),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=1024, out_features=1024),
            nn.ReLU(),
            nn.Linear(in_features=1024, out_features=2)
            )




    def forward(self, x):
        x = self.model(x)
        return x

if __name__ == '__main__':
     net = Net()
     input = torch.ones((64, 3, 224, 224))
     output = net(input)
     print(output.shape)

# 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print(train_data_size)
print(test_data_size)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))

net = Net()

# 损失函数
loss_function = nn.CrossEntropyLoss()

# 优化器
learning_rate = 0.001
optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate,weight_decay=0.01)
# 学习率调度机制
# lambda1 = lambda epoch:0.95 ** epoch
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda = lambda1)


# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 100
# loss和acc的空列表
loss1 = []
loss2 = []
acc1 = []
acc2 = []
# lr_list = []

for i in range(epoch):
    total_train_loss = 0
    total_train_acc = 0
    print("第{}轮训练开始".format(i+1))

    # 训练步骤开始
    for data in traindata:
        imgs, targets = data
        outputs = net(imgs)
        loss = loss_function(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        acc_train = (outputs.argmax(1) == targets).sum()
        total_train_loss = total_train_loss + loss
        total_train_acc = total_train_acc + acc_train

        # 输出训练轮数和训练中的loss
        total_train_step = total_train_step + 1
        if total_train_step % 10 == 0:
            print("训练次数:{}, loss:{}".format(total_train_step, loss))

    # 查看学习率变化
    # print("epoch={}, lr={}".format(epoch, optimizer.state_dict()['param_groups'][0]['lr']))
    # scheduler.step()
    # lr_list.append(optimizer.state_dict()['param_groups'][0]['lr'])
    # 测试步骤
    total_test_loss = 0
    total_test_acc = 0


    net.eval()
    # 后面不进行反向传播,不会进行计算图的构建,用于测试
    with torch.no_grad():
        for data in testdata:
            imgs, targets = data
            outputs = net(imgs)
            loss = loss_function(outputs, targets)
            total_test_loss = total_test_loss + loss
            # 对比标签是否相等,然后布尔值求和,相等即为1,不等为0
            acc_test = (outputs.argmax(1) == targets).sum()
            total_test_acc = total_test_acc + acc_test

    print("整体训练集上的loss:{}".format(total_train_loss))
    print("整体测试集上的loss:{}".format(total_test_loss))
    print("整体训练集上的正确率:{}".format(total_train_acc / train_data_size))
    print("整体测试集上的正确率:{}".format(total_test_acc / test_data_size))
    print("整体测试集上的precision:{}".format(precision_score(targets, outputs.argmax(1), average='macro')))
    print("整体测试集上的recall:{}".format(recall_score(targets, outputs.argmax(1), average='macro')))
    print("整体测试集上的F1-score:{}".format(f1_score(targets, outputs.argmax(1), average='macro')))

    # 用append往空列表中增加元素,元素数量必须与epoch相同
    loss1.append(total_train_loss)
    loss2.append(total_test_loss)
    acc1.append(total_test_acc / test_data_size)
    acc2.append(total_train_acc / train_data_size)

sum = tensor(0)
n = 10
for i in range(epoch-1-n,epoch-1):
    sum = torch.add(sum, acc1[i])
print("最后{}个epoch平均准确率为:{}".format(n,sum/10))

torch.save(net.state_dict(), "net_model")

# 画图
print(loss1)
print(acc1)
fig = plt.figure()
plt.subplot(221)
plt.plot(range(epoch), loss1, label="Train loss")
plt.xlabel("epoch")
plt.ylabel("train loss")
plt.legend()
plt.subplot(222)
plt.plot(range(epoch), loss2, label="Test loss")
plt.xlabel("epoch")
plt.ylabel("test loss")
plt.legend()
plt.subplot(223)
plt.plot(range(epoch), acc2, label=" Train Acc")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.legend()
plt.subplot(224)
plt.plot(range(epoch), acc1, label=" Test Acc")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.legend()
plt.show()

预测部分

from torchvision.transforms import transforms
from PIL import Image
import torch
from torch import nn

transform = transforms.Compose([transforms.Resize((224, 224)),
                                transforms.ToTensor()])

path = "1.webp"
image = Image.open(path)

image = image.convert("RGB")
image = transform(image)
image = image.unsqueeze(dim=0)



device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))

# 输入[3,224,224]
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=7, stride=3, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=128*9*9, out_features=1024),
            nn.ReLU(),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=1024, out_features=1024),
            nn.ReLU(),
            nn.Linear(in_features=1024, out_features=2)
            )

    def forward(self, x):
        x = self.model(x)
        return x


net = Net()
net.load_state_dict(torch.load("net_model"))
net.eval()

outputs = net(image)

mark = (outputs.argmax(1)).item()
if mark == 0:
    print("猫")
else:
    print("狗")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值