27、多智能体系统中的时间延迟与协调跟踪算法研究

多智能体系统中的时间延迟与协调跟踪算法研究

在多智能体系统的研究中,时间延迟是一个不可忽视的因素,它会对系统的稳定性和协调性产生重要影响。本文将深入探讨在有向固定交互下双积分器动力学的协调问题,特别是在存在通信延迟和输入延迟的情况下,如何实现有效的协调跟踪。

1. 完全访问领导者加速度的协调跟踪

在这种情况下,假设领导者的位置 $r_0$ 和速度 $v_0$ 是变化的,并且所有追随者都可以访问领导者的加速度 $\dot{v} 0$。同时,假设 $|v_0| < \delta_v$,$|\dot{v}_0| < \delta_a$,$|\ddot{v}_0| < \delta {\dot{a}}$,其中 $\delta_v$,$\delta_a$ 和 $\delta_{\dot{a}}$ 是正常数。

对于具有双积分器动力学的 $n$ 个追随者,采用以下协调跟踪算法:
[
u_i(t) = \dot{v} 0(t - \tau_1 - \tau_2) - \frac{1}{\sum {j = 0}^{n} a_{ij}} \sum_{j = 0}^{n} a_{ij} \left[ (r_i(t - \tau_1) - r_j(t - \tau_1 - \tau_2)) + \gamma_t (v_i(t - \tau_1) - v_j(t - \tau_1 - \tau_2)) \right]
]
其中,$\tau_1$ 和 $\tau_2$ 分别是输入延迟和通信延迟,$a_{ij}$ 的定义与之前相关内容一致,$\gamma_t$ 是正增益。

使用该算法,系统

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值