二叉树建树、递归遍历、非递归遍历

本文介绍了一种使用C++实现的二叉树结构,包括递归和非递归方式的前序、中序及后序遍历。通过具体的源代码示例,展示了如何从文件中读取数据来构建二叉树,并执行不同类型的遍历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二叉树建树、递归遍历、非递归遍历源码如下:

/*
 * BinaryTree.h
 */ 
#ifndef BINARYTREE_H
#define BINARYTREE_H

#include <fstream>
#include <iostream>
using namespace std;

struct BinTreeNode
{
    int val;
    BinTreeNode *leftChild;
    BinTreeNode *rightChild;
    BinTreeNode(int value = 0, BinTreeNode *left = NULL, BinTreeNode *right = NULL)
        : val(value), leftChild(left), rightChild(right) {}
};

struct PBTNode
{
    BinTreeNode *node;
    bool bFirst;
};

class BinaryTree 
{
    friend ifstream & operator >>(ifstream &in, BinaryTree &binTree);
    friend ofstream & operator <<(ofstream &out, const BinaryTree &binTree);

public:
    BinaryTree() : refVal(-1), root(NULL) {}

public:
    void PreOrder(void (*visit)(BinTreeNode *t));
    void InOrder(void (*visit)(BinTreeNode *t));
    void PostOrder(void (*visit)(BinTreeNode *t));

private:
    void createBinTree(ifstream &in, BinTreeNode *&subTree);
    void PreOrder(BinTreeNode *subTree, void (*visit)(BinTreeNode *t));
    void InOrder(BinTreeNode *subTree, void (*visit)(BinTreeNode *t));
    void PostOrder(BinTreeNode *subTree, void (*visit)(BinTreeNode *t));

protected:
    BinTreeNode *root;
    int refVal;
};
#endif
/*
 * BinaryTree.cpp
 */
#include "BinaryTree.h"
#include <stack>

void BinaryTree::createBinTree(ifstream &in, BinTreeNode *&subTree)
{
    int item;
    if (!in.eof())
    {
        in >> item;
        if (item != refVal)
        {
            subTree = new BinTreeNode(item);
            if (subTree == NULL)
            {
                exit(1);
            }
            createBinTree(in, subTree->leftChild);
            createBinTree(in, subTree->rightChild);
        }
        else {
            subTree = NULL;
        }
    }
}

void BinaryTree::PreOrder(void (*visit)(BinTreeNode *t))
{
    PreOrder(root, visit);
}

void BinaryTree::InOrder(void (*visit)(BinTreeNode *t))
{
    InOrder(root, visit);
}

void BinaryTree::PostOrder(void (*visit)(BinTreeNode *t))
{
    PostOrder(root, visit);
}

//void BinaryTree::PreOrder(BinTreeNode *subTree, void (*visit)(BinTreeNode *t))
//{
//  if (subTree != NULL)
//  {
//      visit(subTree);
//      PreOrder(subTree->leftChild, visit);
//      PreOrder(subTree->rightChild, visit);
//  }
//}

void BinaryTree::PreOrder(BinTreeNode *subTree, void (*visit)(BinTreeNode *t))
{
    if (subTree == NULL) return;
    BinTreeNode *p = subTree;
    stack<BinTreeNode *>s;
    while (!s.empty() || p != NULL)
    {
        while (p != NULL)
        {
            visit(p);
            s.push(p);
            p = p->leftChild;
        }

        if (!s.empty())
        {
            p = s.top();
            s.pop();
            p = p->rightChild;
        }
    }
}

//void BinaryTree::InOrder(BinTreeNode *subTree, void (*visit)(BinTreeNode *t))
//{
//  if (subTree != NULL)
//  {
//      InOrder(subTree->leftChild, visit);
//      visit(subTree);
//      InOrder(subTree->rightChild, visit);
//  }
//}

void BinaryTree::InOrder(BinTreeNode *subTree, void (*visit)(BinTreeNode *t))
{
    if (subTree == NULL) return;
    BinTreeNode *p = subTree;
    stack<BinTreeNode *>s;
    while (!s.empty() || p != NULL)
    {
        while (p != NULL)
        {
            s.push(p);
            p = p->leftChild;
        }

        if (!s.empty())
        {
            p = s.top();
            visit(p);
            s.pop();
            p = p->rightChild;
        }
    }
}

//void BinaryTree::PostOrder(BinTreeNode *subTree, void (*visit)(BinTreeNode *t))
//{
//  if (subTree != NULL)
//  {
//      PostOrder(subTree->leftChild, visit);
//      PostOrder(subTree->rightChild, visit);
//      visit(subTree);
//  }
//}

void BinaryTree::PostOrder(BinTreeNode *subTree, void (*visit)(BinTreeNode *t))
{
    if (subTree == NULL) return;
    stack<PBTNode *> s;
    BinTreeNode *p = subTree;
    PBTNode *pbt = NULL;

    while (!s.empty() || p != NULL)
    {
        while (p != NULL)
        {
            PBTNode *node = new PBTNode;
            node->node = p;
            node->bFirst = true;
            s.push(node);
            p = p->leftChild;
        }

        if (pbt = s.top(), pbt->bFirst == true)
        {
            pbt->bFirst = false;
            s.pop();
            s.push(pbt);
            p = pbt->node->rightChild;
        }
        else
        {
            visit(pbt->node);
            s.pop();
        }
    }
}


ifstream & operator >>(ifstream &in, BinaryTree &binTree)
{
    binTree.createBinTree(in, binTree.root);
    return in;
}


ofstream & operator <<(ofstream &out, const BinaryTree &binTree)
{
    return out;
}
/*
 * main.cpp
 */
#include <iostream>
#include <fstream>
using namespace std;
#include "BinaryTree.h"

void visit(BinTreeNode *t)
{
    cout << t->val << "  ";
}

int main()
{
    ifstream fin("src.txt");
    if (!fin)
    {
        //cerr << "Cannot open file" << endl;
        exit(1);
    }

    BinaryTree p; 
    fin >> p;

    p.PreOrder(visit);
    cout << endl;
    p.InOrder(visit);
    cout << endl;
    p.PostOrder(visit);
    cout << endl;
    return 0;
} 
附: src.txt
2
3
7
-1
-1
11
9
-1
-1
-1
5
22
-1
21
-1
-1
1
-1
-1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值