TensorFlow不同交叉熵计算方式

import tensorflow as tf  
#our NN's output  
logits=tf.constant([[1.0,3.0,2.0],[3.0,2.0,1.0],[1.0,2.0,3.0]])  
#step1:do softmax  
y=tf.nn.softmax(logits)  
#true label  
y_=tf.constant([[0.0,1.0,0.0],[1.0,0.0,0.0],[0.0,0.0,1.0]])  
#step2:do cross_entropy  
cross_entropy = -tf.reduce_sum(y_*tf.log(y))  
#do cross_entropy just one step  
cross_entropy2 = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits = logits,labels=y_))#dont forget tf.reduce_sum()!!  
lab = tf.constant([1,0,2])
cross_entropy3 = tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=lab))
with tf.Session() as sess:  
    softmax=sess.run(y)  
    c_e = sess.run(cross_entropy)  
    c_e2 = sess.run(cross_entropy2)  
    print("step1:softmax result=")  
    print(softmax)  
    print("step2:cross_entropy result=")  
    print(c_e)  
    print("Function(softmax_cross_entropy_with_logits) result=")  
    print(c_e2)  
    c_e3 = sess.run(cross_entropy3)
    print("using sparse cross_entropy")
    print(c_e3)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值