Computational Algorithms

There are three major computational tasks for implementing the EL-based methods:
(i) to find the Lagrange multiplier λ as the solution to (6) with a single non-stratified

sample; 

(ii) to obtain the MPEL solutions for stratified sampling, raking ratio estimation

and other “irregular” cases; and

 (iii) to construct the pseudo EL ratio confidence intervals  through profiling.



We assume that the population mean X is an inner point of the convex hull formed  by the sample observations {xi, i ∈ s} so that a unique solution to (6) exists. Chen et  al. (2002) proposed a simple algorithm for solving (6) with guaranteed convergence if  the solution exists. 


The uniqueness of the solution and the convergence of the algorithm are proved based on a duality argument: maximizing lns(p) with respect to p subject to  pi > 0, Pi∈s pi = 1 and the benchmark constraints (5) is a dual problem of maximizing  H(λ) = Pi∈s  ˜ di(s) log(1 + λ0ui) with respect to λ with no restrictions on λ. In both

cases the solution λ solves the equation system (6) 


In both  cases the solution λ solves the equation system (6). Since H(λ) is a concave function of  λ with the matrix of second order derivatives negative definite, a unique maximum point  to H(λ) exists and can be found using the Newton-Raphson search algorithm. Denoting  xi −X by ui, the algorithm of Chen et al. (2002) for solving (6) is as follows








6 Discussion


      The EL and PEL approaches are flexible enough to handle a variety of other problems.


In particular, data from two or more independent surveys from the same target population can be combined naturally through the PEL approach and efficient point estimators and pseudo EL ratio confidence intervals for the population mean can be obtained.          






The PEL approach is  flexible in combining data from different sources as demonstrated above. Depending on

what is available, new constraints can be added to and existing ones can be removed  from the system of constraints.



Another problem of interest is to make inference on the population parameters of  interest in the presence of imputation for item non-response. 

Again, the EL and pseudo  EL approaches can be applied in a systematic manner to handle imputed data and  any auxiliary population information. Recent work has focused on EL inference on the mean, distribution function and quantiles of a variable of interest y, assuming that an  iid sample {(yi, xi), i = 1, · · · , n} subject to missing yi is available. The missing y-values are imputed using regression imputation, assuming a missing at random (MAR)  response mechanism and a linear regression model (Wang and Rao, 2002a; Qin, Rao and Ren, 2006). EL inference using kernel regression imputation, assuming only that  the conditional expectation of y given x is a smooth function of x, has likewise been  studied (Wang and Rao, 2002b; Wang and Chen, 2006). Various extensions have also  been analyzed. The pseudo EL approach can be applied to extend the above work to  survey data

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值