24.10 Time series models

本文通过分析lynx数据集,探讨了如何使用偏自相关图确定ARIMA模型的AR阶数,并通过比较不同阶数的AIC值来选择最优模型。文中展示了如何逐步测试不同的AR与MA阶数组合,以找到最佳的非季节性部分模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Typically, we would use the partial autocorrelation plot (above) to determine the order. So, for the lynx data

(p. 800) we would use order 2 or 4, depending on taste. 

Other things being equal, parsimony suggests the use of order 2. The fundamental difference is that a set of random components (εt− j) influences the current value of a MA process, whereas only the current random effect (εt) affects an AR process. Both kinds of effects are at work in an ARMA processes. Ecological models of population dynamics are typically AR models.

For instance, 


windows(7,4)
par(mfrow=c(1,2))
acf(Lynx,main="")

acf(Lynx,type="p",main="")

The order vector specifies the non-seasonal part of the ARIMA model: the three components (p, d, q)
are the AR order, the degree of differencing, and the MA order. We start by investigating the effects of AR

order with no differencing and no moving average terms, comparing models on the basis of the AIC:


model10 <- arima(Lynx,order=c(1,0,0))
model20 <- arima(Lynx,order=c(2,0,0))
model30 <- arima(Lynx,order=c(3,0,0))
model40 <- arima(Lynx,order=c(4,0,0))
model50 <- arima(Lynx,order=c(5,0,0))
model60 <- arima(Lynx,order=c(6,0,0))

AIC(model10,model20,model30,model40,model50,model60)



model01 <- arima(Lynx,order=c(0,0,1))
model02 <- arima(Lynx,order=c(0,0,2))
model03 <- arima(Lynx,order=c(0,0,3))
model04 <- arima(Lynx,order=c(0,0,4))
model05 <- arima(Lynx,order=c(0,0,5))
model06 <- arima(Lynx,order=c(0,0,6))

AIC(model01,model02,model03,model04,model05,model06)


model40 <- arima(Lynx,order=c(4,0,0))
model41 <- arima(Lynx,order=c(4,0,1))
model42 <- arima(Lynx,order=c(4,0,2))
model43 <- arima(Lynx,order=c(4,0,3))

AIC(model40,model41,model42,model43)

model400 <- arima(Lynx,order=c(4,0,0))
model401 <- arima(Lynx,order=c(4,1,0))
model402 <- arima(Lynx,order=c(4,2,0))
model403 <- arima(Lynx,order=c(4,3,0))
AIC(model400,model401,model402,model403)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值