attach(Gain)
names(Gain)
m1 <- lm(Weight~Sex*Age*Genotype)
summary(m1)
m2 <- step(m1)
summary(m2)
newGenotype <- Genotype
levels(newGenotype)
levels(newGenotype)[c(3,5)] <- "ClonesCandE"
levels(newGenotype)[c(2,4)] <- "ClonesBandD"
levels(newGenotype)
m3 <- lm(Weight~Sex+Age+newGenotype)
anova(m2,m3)
summary(m3)
plot(Age,Weight,type="n")
colours <- c("green","red","black","blue")
lines <- c(1,2)
symbols <- c(16,17)
points(Age,Weight,pch=symbols[as.numeric(Sex)],
col=colours[as.numeric(newGenotype)])
xv <- c(1,5)
for (i in 1:2) {
for (j in 1:4) {
a <- coef(m3)[1]+(i>1)* coef(m3)[2]+(j>1)*coef(m3)[j+2]
b <- coef(m3)[3]
yv <- a+b*xv
lines(xv,yv,lty=lines[i],col=colours[j]) } }

本文通过R语言展示了如何加载数据并进行多元线性回归分析,包括模型选择、对比不同模型的效果,并使用不同颜色和符号绘制了带有回归线的数据分布图。
1504

被折叠的 条评论
为什么被折叠?



