Analysis of Covariance

本案例使用R语言进行了一次详细的数据分析过程,包括从数据读取到可视化展示、假设检验等多个环节。通过分析不同放牧条件下植物根部与果实生长的关系,展示了如何利用线性模型和方差分析等统计方法来探索变量间的相互作用。
regrowth <- read.table("c:\\temp\\ipomopsis.txt",header=T)
attach(regrowth)

names(regrowth)


plot(Root,Fruit,pch=16,col=c("blue","red")[as.numeric(Grazing)])


levels(Grazing)


abline(lm(Fruit[Grazing=="Grazed"]~Root[Grazing=="Grazed"]),col="blue")

abline(lm(Fruit[Grazing=="Ungrazed"]~Root[Grazing=="Ungrazed"]),col="red")


tapply(Fruit,Grazing, mean)


t.test(Fruit~Grazing)

sum(Root);sum(Rootˆ2)

sum(Fruit);sum(Fruitˆ2)

sum(Root*Fruit)

sum(Root[Grazing=="Grazed"]);sum(Root[Grazing=="Grazed"]ˆ2)

sum(Root[Grazing=="Ungrazed"]);sum(Root[Grazing=="Ungrazed"]ˆ2)

sum(Fruit[Grazing=="Grazed"]);sum(Fruit[Grazing=="Grazed"]ˆ2)

sum(Fruit[Grazing=="Ungrazed"]);sum(Fruit[Grazing=="Ungrazed"]ˆ2)

sum(Root[Grazing=="Grazed"]*Fruit[Grazing=="Grazed"])

sum(Root[Grazing=="Ungrazed"]*Fruit[Grazing=="Ungrazed"])

ancova <- lm(Fruit~Grazing*Root)

summary(ancova)

anova(ancova)

ancova2 <- update(ancova, ~ . - Grazing:Root)

anova(ancova,ancova2)


ancova3 <- update(ancova2, ~ . - Grazing)

anova(ancova2,ancova3)


summary(ancova2)

anova(ancova2)


• Utilize SPSS 26.0 statistical software to analyze the quantitative data collected from all study participants. Begin by performing comprehensive descriptive statistics to effectively summarize the central tendency and variability across the key datasets. Specifically, calculate the mean, standard deviation, maximum value, and minimum value for the physical health knowledge scores, physical fitness test results, and satisfaction scores within both the experimental group and the control group, both prior to and following the intervention. This initial step provides a crucial overview of the overall data distribution, aids in identifying any potential outliers or unusual patterns, and establishes a foundational understanding of the dataset characteristics for subsequent analyses. • Subsequently, conduct inferential statistical procedures to rigorously test the study hypotheses and explore potential relationships between variables. Initiate this phase by employing an independent sample t-test. Apply this test to compare the baseline differences in physical health knowledge scores, physical fitness test results, and satisfaction scores between the experimental group and the control group before the intervention commences, using a predetermined significance level of α=0.05. This critical comparison ensures that the two groups are statistically comparable at the outset, confirming the absence of significant pre-existing differences prior to the administration of the intervention. • Proceed next with paired sample t-tests to meticulously examine within-group changes over the intervention period. Conduct these tests separately for the experimental group and the control group, comparing the differences in physical health knowledge scores, physical fitness test results, and satisfaction scores recorded before the intervention with those recorded after the intervention, again applying the α=0.05 significance threshold. This analysis directly assesses the magnitude and statistical significance of changes occurring over time within each group individually, providing insight into the natural progression or any inherent group-specific effects. • Then, implement analysis of covariance (ANCOVA) to account for initial variations between participants and enhance the precision of the between-group comparison after the intervention. For this analysis, incorporate the pre-test (baseline) results as covariates. Analyze the adjusted differences in post-test results for physical health knowledge scores, physical fitness test results, and satisfaction scores between the experimental group and the control group, statistically controlling for these baseline scores. This sophisticated approach effectively eliminates the confounding influence of pre-existing differences among participants, thereby yielding a more accurate and unbiased evaluation of the true intervention effect, with statistical significance assessed at α=0.05. • Finally, execute bivariate correlation analyses to investigate potential linear associations between the measured variables. Analyze the pairwise correlations between physical health knowledge scores, physical fitness test results, and satisfaction scores using Pearson's correlation coefficient (r). This analysis explores the strength and direction of potential relationships and dependencies among these key outcome measures, with the significance of each correlation coefficient rigorously tested at the α=0.05 level. Throughout all inferential analyses (t-tests, ANCOVA, correlation), it is imperative to include thorough checks for underlying statistical assumptions, such as normality of distribution and homogeneity of variances (homoscedasticity), to ensure the validity and robustness of the reported findings.根据以上画一个流程图
08-03
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值