在一个粗糙的平面上,有一个质量为1kg1\text{kg}1kg的小木块,小木块的初速度为000,小木块与平面的动摩擦因数μ=0.2\mu=0.2μ=0.2。有一个拉力FFF拉动小木块从左往右移动,拉力FFF与时间ttt的关系为F=0.3t2−2.4t+5.6F=0.3t^2-2.4t+5.6F=0.3t2−2.4t+5.6。(ggg取10N/kg10\text{N/kg}10N/kg)
(1)求小木块在前10s10\text{s}10s的运动距离。
(2)求拉力在前10s10\text{s}10s对小木块做的功。
解:
\qquad(1)小木块的动摩擦力为f=μFN=μmg=2Nf=\mu F_N=\mu mg=2Nf=μFN=μmg=2N
\qquad小木块受到向右的作用力为F1=F−f=0.3t2−2.4t+3.6F_{1}=F-f=0.3t^2-2.4t+3.6F1=F−f=0.3t2−2.4t+3.6
\qquad由牛顿第二定律,小木块的加速度a=F1m=0.3t2−2.4t+3.6=0.3(t−2)(t−6)a=\dfrac{F_1}{m}=0.3t^2-2.4t+3.6=0.3(t-2)(t-6)a=mF1=0.3t2−2.4t+3.6=0.3(t−2)(t−6)
\qquad则小木块的速度v=∫dv=∫adt=0.1t3−1.2t2+3.6t+Cv=\int dv=\int adt=0.1t^3-1.2t^2+3.6t+Cv=∫dv=∫adt=0.1t3−1.2t2+3.6t+C
\qquad因为小木块的初速度为000,所以t=0t=0t=0时v=0v=0v=0,得C=0C=0C=0
\qquad当速度为000且拉力小于小木块的动摩擦力时,小木块受到静摩擦力,加速度为000
\qquad设小木块由受动摩擦力转为静摩擦力的时间为t1t_1t1,则t1∈(2,6)t_1\in (2,6)t1∈(2,6)且∫0t1adt=0\int_0^{t_1}adt=0∫0t1adt=0
\qquad即t1∈(2,6)t_1\in(2,6)t1∈(2,6)且0.1t13−1.2t12+3.6t1=00.1t_1^3-1.2t_1^2+3.6t_1=00.1t13−1.2t12+3.6t1=0,解得t1t_1t1无解
\qquad所以小木块一直受到动摩擦力,小木块受到摩擦力恒为2N2N2N
\qquad小木块的运动距离为s=∫010vdt=∫010(0.1t3−1.2t2+3.6t)dt=(0.025t4−0.4t3+1.8t2)∣010=30ms=\int_0^{10}vdt=\int_0^{10}(0.1t^3-1.2t^2+3.6t)dt=(0.025t^4-0.4t^3+1.8t^2)\bigg\vert_0^{10}=30ms=∫010vdt=∫010(0.1t3−1.2t2+3.6t)dt=(0.025t4−0.4t3+1.8t2)010=30m
\qquad(2)因为W=Fs=FvtW=Fs=FvtW=Fs=Fvt
\qquad所以拉力对小木块做的功W=∫010Fvdt=∫010(0.3t2−2.4t+5.6)(0.1t3−1.2t2+3.6t)dtW=\int_0^{10}Fvdt=\int_0^ {10}(0.3t^2-2.4t+5.6)(0.1t^3-1.2t^2+3.6t)dtW=∫010Fvdt=∫010(0.3t2−2.4t+5.6)(0.1t3−1.2t2+3.6t)dt
=∫010(0.03t5−0.6t4+4.52t3−15.36t2+20.16t)dt\qquad\qquad\qquad\qquad\qquad\qquad \ \ =\int_0^{10}(0.03t^5-0.6t^4+4.52t^3-15.36t^2+20.16t)dt =∫010(0.03t5−0.6t4+4.52t3−15.36t2+20.16t)dt
=(0.005t6−0.12t5+1.13t4−5.12t3+10.08t2)∣010\qquad\qquad\qquad\qquad\qquad\qquad \ \ =(0.005t^6-0.12t^5+1.13t^4-5.12t^3+10.08t^2)\bigg\vert_0^{10} =(0.005t6−0.12t5+1.13t4−5.12t3+10.08t2)010
=188J\qquad\qquad\qquad\qquad\qquad\qquad \ \ =188J =188J
2712





