例1
函数
f
(
x
)
f(x)
f(x)在
[
0
,
1
]
[0,1]
[0,1]上连续,在
(
0
,
1
)
(0,1)
(0,1)内可导,
f
(
0
)
=
e
,
f
(
1
)
=
1
f(0)=e,f(1)=1
f(0)=e,f(1)=1,
求证:
∃
ξ
∈
(
0
,
1
)
\exist\xi \in (0,1)
∃ξ∈(0,1)使得
f
(
ξ
)
+
f
′
(
ξ
)
=
0
f(\xi)+f'(\xi)=0
f(ξ)+f′(ξ)=0。
解:
\qquad
令
F
(
x
)
=
e
x
f
(
x
)
F(x)=e^xf(x)
F(x)=exf(x)
F ( 0 ) = e 0 f ( 0 ) = e , F ( 1 ) = e 1 f ( 1 ) = e \qquad F(0)=e^0f(0)=e,F(1)=e^1f(1)=e F(0)=e0f(0)=e,F(1)=e1f(1)=e
∵ F ( x ) \qquad \because F(x) ∵F(x)在 [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导, F ( 0 ) = F ( 1 ) = e F(0)=F(1)=e F(0)=F(1)=e
∴ \qquad \therefore ∴由罗尔定理, ∃ ξ ∈ ( 0 , 1 ) \exist \xi \in(0,1) ∃ξ∈(0,1),使 F ′ ( ξ ) = 0 F'(\xi)=0 F′(ξ)=0
\qquad 即 e ξ f ( ξ ) + e ξ f ′ ( ξ ) = 0 e^\xi f(\xi)+e^\xi f'(\xi)=0 eξf(ξ)+eξf′(ξ)=0
∵ \qquad \because ∵当 ξ ∈ ( 0 , 1 ) \xi\in (0,1) ξ∈(0,1)时, e ξ > 0 e^\xi >0 eξ>0
∴ f ( ξ ) + f ′ ( ξ ) = 0 \qquad \therefore f(\xi)+f'(\xi)=0 ∴f(ξ)+f′(ξ)=0
\qquad 得证 ∃ ξ ∈ ( 0 , 1 ) \exist\xi \in (0,1) ∃ξ∈(0,1)使得 f ( ξ ) + f ′ ( ξ ) = 0 f(\xi)+f'(\xi)=0 f(ξ)+f′(ξ)=0
例2
函数
f
(
x
)
f(x)
f(x)在
[
0
,
1
]
[0,1]
[0,1]上连续,在
(
0
,
1
)
(0,1)
(0,1)内可导,
f
(
1
)
=
0
f(1)=0
f(1)=0,
求证:
∃
ξ
∈
(
0
,
1
)
\exist\xi \in (0,1)
∃ξ∈(0,1)使得
2
f
(
ξ
)
+
ξ
f
′
(
ξ
)
=
0
2f(\xi)+\xi f'(\xi)=0
2f(ξ)+ξf′(ξ)=0。
解:
\qquad
令
F
(
x
)
=
x
2
f
(
x
)
F(x)=x^2f(x)
F(x)=x2f(x)
F ( 0 ) = 0 × f ( 0 ) = 0 , F ( 1 ) = 1 × f ( 1 ) = 0 \qquad F(0)=0\times f(0)=0,F(1)=1\times f(1)=0 F(0)=0×f(0)=0,F(1)=1×f(1)=0
∵ F ( x ) \qquad \because F(x) ∵F(x)在 [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导, F ( 0 ) = F ( 1 ) = 0 F(0)=F(1)=0 F(0)=F(1)=0
∴ \qquad \therefore ∴由罗尔定理, ∃ ξ ∈ ( 0 , 1 ) \exist \xi\in(0,1) ∃ξ∈(0,1),使 F ′ ( ξ ) = 0 F'(\xi)=0 F′(ξ)=0
\qquad 即 2 ξ f ( ξ ) + ξ 2 f ′ ( ξ ) = 0 2\xi f(\xi)+\xi^2f'(\xi)=0 2ξf(ξ)+ξ2f′(ξ)=0
∵ \qquad \because ∵当 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1)时, ξ > 0 \xi>0 ξ>0
∴ 2 f ( ξ ) + ξ f ′ ( ξ ) = 0 \qquad \therefore 2f(\xi)+\xi f'(\xi)=0 ∴2f(ξ)+ξf′(ξ)=0
\qquad 得证 ∃ ξ ∈ ( 0 , 1 ) \exist\xi \in (0,1) ∃ξ∈(0,1)使得 2 f ( ξ ) + ξ f ′ ( ξ ) = 0 2f(\xi)+\xi f'(\xi)=0 2f(ξ)+ξf′(ξ)=0
总结
当题目给出 f ( x ) f(x) f(x)的若干个值 f ( x 1 ) , f ( x 2 ) … f(x_1),f(x_2)\dots f(x1),f(x2)…,并求证一个由 ξ , f ( ξ ) , f ′ ( ξ ) \xi,f(\xi),f'(\xi) ξ,f(ξ),f′(ξ)组成的式子为零时,我们可以考虑构造一个函数 F ( x ) F(x) F(x),根据罗尔定理得出 ∃ ξ ∈ ( a , b ) \exist \xi\in(a,b) ∃ξ∈(a,b)使得 F ′ ( ξ ) = 0 F'(\xi)=0 F′(ξ)=0,然后整理一下式子即可得证。
罗尔中值定理应用
1万+

被折叠的 条评论
为什么被折叠?



