Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and
0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
题意:在题unique path的基础上加了一个条件:数组中存在obstacle。
思路:
dp算法。主题思路还是unique path的思路,只是在对dp数组初始化和后续处理上加了一些变化。
代码:
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length, n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
for(int i = 0; i < m; i++)
{
if(obstacleGrid[i][0] == 0)
dp[i][0] = 1;
else
break;
}
for(int i = 0; i < n; i++)
{
if(obstacleGrid[0][i] == 0)
dp[0][i] = 1;
else
break;
}
for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++)
if(obstacleGrid[i][j] == 0)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
else
dp[i][j] = 0;
return dp[m - 1][n - 1];
}