二元正态分布随机变量
如果随机变量XXX、YYY的联合PDF为
pX,Y(x,y)=12πσxσY1−p2exp{ −(x−μX)2σX2+(y−μY)2σY2−2ρ(x−μX)(y−μY)σXσY2(1−ρ2)}p_{X,Y}(x,y)=\frac{1}{2\pi \sigma_x \sigma_Y \sqrt{1-p^2}}\exp\left\{-\frac{\frac{(x-\mu_X)^2}{\sigma_X^2}+\frac{(y-\mu_Y)^2}{\sigma_Y^2}-\frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y}}{2(1-\rho^2)}\right\}pX,Y(x,y)=2πσxσY1−p21exp⎩⎨⎧−2(1−ρ2)σX2(x−μX)2+σY2(y−μY)2−σXσY2ρ(x−μX)(y−μY)⎭⎬⎫
则称XXX、YYY满足二元正态分布,其中X∼N(μX,σX2),Y∼N(μY,σY2)X \sim N(\mu_X,\sigma_X^2),Y \sim N(\mu_Y,\sigma_Y^2)X∼N(μX,σX2),Y∼N(μY,σY2),协方差CXY=E{ XY}−μXμYC_{XY}={\rm E}\{XY\}-\mu_X\mu_YCXY=E{ XY}−<