BERT for Joint Intent Classification and Slot Filling
论文代码解读(五)
trainer.py
import os
import logging
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from transformers import BertConfig, AdamW, get_linear_schedule_with_warmup
from utils import MODEL_CLASSES, set_seed, compute_metrics, get_intent_labels, get_slot_labels
logger = logging.getLogger(__name__)
#Trainer(args, train_dataset, dev_dataset, test_dataset)
class Trainer(object):
def __init__(self, args, train_dataset=None, dev_dataset=None, test_dataset=None):
self.args = args
self.train_dataset = train_dataset
self.dev_dataset = dev_dataset
self.test_dataset = test_dataset
self.intent_label_lst = get_intent_labels(args)#获取所有意图标签
self.slot_label_lst = get_slot_labels(args)#获取所有槽值标签
# Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
self.pad_token_label_id = args.ignore_index# -100
self.config_class, self.model_class, _ = MODEL_CLASSES[args.model_type]#BertConfig, JointBERT, BertTokenizer
self.bert_config = self.config_class.from_pretrained(args.model_name_or_path, finetuning_task=args.task)
self.model = self.model_class(self.bert_config, args, self.intent_label_lst, self.slot_label_lst)
# GPU or CPU
self.device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
self.model.to(self.device)
def train(self):
# 定义采样方式,对象为样本特征
train_sampler = RandomSampler(self.train_dataset)
# 构建dataloader,dataloader本质是一个可迭代对象
train_dataloader = DataLoader(self.train_dataset, sampler=train_sampler, batch_size=self.args.batch_size)
if self.args.max_steps > 0:
t_total = self.args.max_steps# 10000
# 10000/500/2=10
self.args.num_train_epochs = self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
else:# 500/2*10
t_total = len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)优化器
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{
'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': self.args.weight_decay},
{
'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=t_total)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(self.train_dataset))
logger.info(" Num Epochs = %d", self.args.num_train_epochs)
logger.info(" Total train batch size = %d", self.args.batch_size)
logger.info(" Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss = 0.0
self.model.zero_grad()#梯度归0
train_iterator = trange(int(self.args.num_train_epochs), desc="Epoch")#进度条<--tqdm, 例如分成10组
# 随机数种子seed确定时,模型的训练结果将始终保持一致
set_seed(self.args)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration"</

本文介绍了一个基于BERT的联合模型,用于同时进行意图识别和槽位填充任务。模型利用了BERT的强大预训练能力,通过微调适应特定领域的对话理解任务。文章详细解析了模型训练流程,包括数据加载、模型初始化、训练循环、评估和预测等关键环节。
最低0.47元/天 解锁文章
1797

被折叠的 条评论
为什么被折叠?



