JointBert代码解读(五)

本文介绍了一个基于BERT的联合模型,用于同时进行意图识别和槽位填充任务。模型利用了BERT的强大预训练能力,通过微调适应特定领域的对话理解任务。文章详细解析了模型训练流程,包括数据加载、模型初始化、训练循环、评估和预测等关键环节。

BERT for Joint Intent Classification and Slot Filling
论文代码解读(五)

trainer.py

import os
import logging
from tqdm import tqdm, trange

import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from transformers import BertConfig, AdamW, get_linear_schedule_with_warmup

from utils import MODEL_CLASSES, set_seed, compute_metrics, get_intent_labels, get_slot_labels

logger = logging.getLogger(__name__)

#Trainer(args, train_dataset, dev_dataset, test_dataset)
class Trainer(object):
    def __init__(self, args, train_dataset=None, dev_dataset=None, test_dataset=None):
        self.args = args
        self.train_dataset = train_dataset
        self.dev_dataset = dev_dataset
        self.test_dataset = test_dataset

        self.intent_label_lst = get_intent_labels(args)#获取所有意图标签
        self.slot_label_lst = get_slot_labels(args)#获取所有槽值标签
        # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
        self.pad_token_label_id = args.ignore_index# -100

        self.config_class, self.model_class, _ = MODEL_CLASSES[args.model_type]#BertConfig, JointBERT, BertTokenizer
        self.bert_config = self.config_class.from_pretrained(args.model_name_or_path, finetuning_task=args.task)
        self.model = self.model_class(self.bert_config, args, self.intent_label_lst, self.slot_label_lst)

        # GPU or CPU
        self.device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
        self.model.to(self.device)

    def train(self):
        # 定义采样方式,对象为样本特征
        train_sampler = RandomSampler(self.train_dataset)
        # 构建dataloader,dataloader本质是一个可迭代对象
        train_dataloader = DataLoader(self.train_dataset, sampler=train_sampler, batch_size=self.args.batch_size)

        if self.args.max_steps > 0:
            t_total = self.args.max_steps# 10000
            # 10000/500/2=10
            self.args.num_train_epochs = self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
        else:# 500/2*10
            t_total = len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs

        # Prepare optimizer and schedule (linear warmup and decay)优化器
        no_decay = ['bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {
   
   'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
             'weight_decay': self.args.weight_decay},
            {
   
   'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
        optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon)
        scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=t_total)

        # Train!
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(self.train_dataset))
        logger.info("  Num Epochs = %d", self.args.num_train_epochs)
        logger.info("  Total train batch size = %d", self.args.batch_size)
        logger.info("  Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

        global_step = 0
        tr_loss = 0.0
        self.model.zero_grad()#梯度归0

        train_iterator = trange(int(self.args.num_train_epochs), desc="Epoch")#进度条<--tqdm, 例如分成10组
        # 随机数种子seed确定时,模型的训练结果将始终保持一致
        set_seed(self.args)

        for _ in train_iterator:
            epoch_iterator = tqdm(train_dataloader, desc="Iteration"</
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值