从ImageNet和CNN说起
图像的分类和识别一直是计算机视觉的热门研究领域,在医学图像领域,很多方法也都是从计算机视觉领域借鉴过来的,而计算机视觉的许多方法又离不开机器学习和人工智能的基础。
在典型的图像分类和识别问题中,通常有两个重要的步骤,一个是特征提取,常见的有GLCM, HOG, LBP, Haar Wavelet, 一个是分类器, 例如SVM, Random Forest, Neuron Network等。特征提取过程中通常是人工选取某些特征,但是难以确定这些特征是否真正准确地描述了不同类别的差异,怎样才能得到最好的特征呢?
于是卷积神经网络应运而生。其思想是通过一些卷积层的参数来描述特征,这些参数的值不是人工设定,而是通过大量的训练数据通过训练自动得到。再配合传统的Neuron Network可以同时训练特征的参数和分类器的参数。这就是卷积神经网络(Convolution Neuron Network, CNN)。下图简要归纳了它的结构与传统Neuron Network的联系与区别。
CNN的成功主要起源于它在ImageNet大规模视觉识别挑战赛(ILSVRC)上的成就。ImageNet是一个斯坦福大学Fei-fei Li教授发起的图像数据库,包含120万以上的训练数据和1000种不同的类别,其识别一直比较困难,直到2012年AlexNet的提出,从此以后几乎每年ILSVRC的赢家都使用了CNN,相比以往的方法大幅提高了识别的准确率。
CNN在ImageNet上的成功源于三个主要因素:一是大规模的训练数据。二是更为复杂的模型(CNN)。网络结构更加复杂,更深,参数更多。三是GPU对计算的加速,使以往需要数周的训练过程只需一天甚至数小时以内就可以完成。

本文探讨了CNN如何从ImageNet的图像识别成功中受益,并分析了将其应用于医学图像识别的挑战,如数据缺乏。通过转移学习解决小样本问题,研究表明在医学图像分类和检测中,使用ImageNet预训练模型可以显著提高性能,减少过度拟合,为医学图像分析带来潜力。
最低0.47元/天 解锁文章
774

被折叠的 条评论
为什么被折叠?



