导出onnx模型
import torch
import numpy as np
import pointops
class CustomModel(torch.nn.Module):
def __init__(self):
super(CustomModel, self).__init__()
def forward(self, nsample, xyz, new_xyz, offset, new_offset):
tmp = pointops.knnquery(nsample, xyz, new_xyz, offset, new_offset)
return tmp
model = CustomModel().cuda()
nsample = [8]
xyz = torch.randn(47358, 3).cuda()
new_xyz = torch.randn(47358, 3).cuda()
offset = torch.tensor([47358]).cuda() .to(torch.int32)
new_offset = torch.tensor([47358]).cuda() .to(torch.int32)
np.savetxt("xyz.txt", xyz.reshape(47358, 3).detach().cpu().numpy())
np.savetxt("new_xyz.txt", new_xyz.reshape(47358, 3).detach().cpu().numpy())
torch.onnx.export(model, (nsample, xyz, new_xyz, offset, new_offset), "knnquery.onnx", opset_version=13)
导出onnx模型结构如下:

编写tensorrt插件
采用TensorRT-10.6.0.26。由于TensorRT是部分开源,首先在https://developer.nvidia.com/tensorrt/download/10x下载TensorRT-10.6.0.26的库,然后在https://github.com/NVIDIA/TensorRT/tree/v10.6.0下载源代码。
在TensorRT/plugin下新建knnQuery文件夹,添加下面文件:
knnQuery.h
#ifndef TRT_KNNQUERY_PLUGIN_H
#define TRT_KNNQUERY_PLUGIN_H
#include "NvInfer.h"
#include "NvInferPlugin.h"
#include "common/plugin.h"
#include "common/cuda_utils.h"
#include <vector>
#include <cstring>
namespace nvinfer1
{
namespace plugin
{
void knnquery_cuda_launcher(int m, int nsample, const float *xyz, const float *new_xyz, const int *offset, const int *new_offset, int *idx, float *dist2, cudaStream_t stream);
class knnQuery : public nvinfer1::IPluginV2DynamicExt
{
public:
knnQuery(int sample);
knnQuery(void const* data, size_t length);
~knnQuery() override;
// 插件基本信息
char const* getPluginType() const noexcept override;
char const* getPluginVersion() const noexcept override;
int getNbOutputs() const noexcept override;
// 输出维度计算
nvinfer1::DimsExprs getOutputDimensions(int outputIndex,
const nvinfer1::DimsExprs* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept override;
// 初始化与销毁
int initialize() noexcept override;
void terminate() noexcept override;
// 执行相关
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept override;
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
int nbInputs, const nvinfer1::PluginTensorDesc* outputs,
int nbOutputs) const noexcept override;
// 数据类型与格式支持
DataType getOutputDataType(int index, DataType const* inputTypes, int nbInputs) const noexcept override;
bool supportsFormatCombination(int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs,int nbOutputs) noexcept override;
// 配置插件
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) noexcept override;
// 序列化
size_t getSerializationSize() const noexcept override;
void serialize(void* buffer) const noexcept override;
// 其他接口
nvinfer1::IPluginV2DynamicExt* clone() const noexcept override;
void destroy() noexcept override;
void setPluginNamespace(char const* libNamespace) noexcept override;
char const* getPluginNamespace() const noexcept override;
private:
int mSample;
std::string mPluginNamespace;
Dims mInputDims;
Dims mSampleDims;
};
class knnQueryCreator : public nvinfer1::IPluginCreator
{
public:
knnQueryCreator();
~knnQueryCreator() override = default;
char const* getPluginName() const noexcept override;
char const* getPluginVersion() const noexcept override;
PluginFieldCollection const* getFieldNames() noexcept override;
IPluginV2* createPlugin(char const* name, PluginFieldCollection const* fc) noexcept override;
IPluginV2* deserializePlugin(char const* name, void const* serialData, size_t serialLength) noexcept override;
void setPluginNamespace(nvinfer1::AsciiChar const* pluginNamespace) noexcept override;
const char* getPluginNamespace() const noexcept override;
private:
static PluginFieldCollection mFC;
static std::vector<PluginField> mPluginAttributes;
std::string mNamespace;
};
} // namespace plugin
} // namespace nvinfer1
#endif // TRT_KNNQUERY_PLUGIN_H
knnQuery.cpp
#include "knnQuery.h"
#include "common/dimsHelpers.h"
using namespace nvinfer1;
using namespace nvinfer1::pluginInternal;
using nvinfer1::plugin::knnQuery;
using nvinfer1::plugin::knnQueryCreator;
// 插件实现
knnQuery::knnQuery(int sample) : mSample(sample)
{
//std::cout<<"knnQuery"<<std::endl;
}
knnQuery::knnQuery(void const* data, size_t length)
{
mSample = *static_cast<int const*>(data);
}
knnQuery::~knnQuery() {}
// 插件基本信息
char const* knnQuery::getPluginType() const noexcept
{
//std::cout<<"getPluginType"<<std::endl;
return "knnquery";
}
char const* knnQuery::getPluginVersion() const noexcept
{
//std::cout<<"getPluginVersion"<<std::endl;
return "1";
}
int knnQuery::getNbOutputs() const noexcept
{
//std::cout<<"getNbOutputs"<<std::endl;
return 2;
}
nvinfer1::DimsExprs knnQuery::getOutputDimensions(int outputIndex,
const nvinfer1::DimsExprs* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
//std::cout << "getOutputDimensions" << std::endl;
// 验证输出索引和输入数量
PLUGIN_ASSERT(nbInputs == 5);
// 构建输出维度: (B, M)
nvinfer1::DimsExprs outputDims;
outputDims.nbDims = 2;
// 第一个维度为批次大小 B (与输入保持一致)
outputDims.d[0] = exprBuilder.constant(static_cast<int>(inputs[2].d[0]->getConstantValue()));
outputDims.d[1] = exprBuilder.constant(mSample);
return outputDims;
}
// 初始化
int knnQuery::initialize() noexcept
{
return STATUS_SUCCESS;
}
// 销毁资源
void knnQuery::terminate() noexcept {}
// 执行核函数
int knnQuery::enqueue(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept
{
//std::cout << "enqueue" << std::endl;
try
{
// 验证输入维度
PLUGIN_ASSERT(inputDesc[0].dims.nbDims == 0); // nsample (标量)
PLUGIN_ASSERT(inputDesc[1].dims.nbDims == 2); // xyz: (总点数, 3)
PLUGIN_ASSERT(inputDesc[2].dims.nbDims == 2); // new_xyz: (总查询点, 3)
PLUGIN_ASSERT(inputDesc[3].dims.nbDims == 1); // offset: 原始点云批次偏移
PLUGIN_ASSERT(inputDesc[4].dims.nbDims == 1); // new_offset: 查询点批次偏移
PLUGIN_ASSERT(inputDesc[1].dims.d[1] == 3); // xyz为3D点
PLUGIN_ASSERT(inputDesc[2].dims.d[1] == 3); // new_xyz为3D点
// 验证数据类型
PLUGIN_ASSERT(inputDesc[0].type == nvinfer1::DataType::kINT32); // nsample类型
PLUGIN_ASSERT(inputDesc[1].type == nvinfer1::DataType::kFLOAT); // xyz类型
PLUGIN_ASSERT(inputDesc[2].type == nvinfer1::DataType::kFLOAT); // new_xyz类型
PLUGIN_ASSERT(inputDesc[3].type == nvinfer1::DataType::kINT32); // offset类型
PLUGIN_ASSERT(inputDesc[4].type == nvinfer1::DataType::kINT32); // new_offset类型
PLUGIN_ASSERT(outputDesc[0].type == nvinfer1::DataType::kINT32); // 输出索引类型
PLUGIN_ASSERT(outputDesc[1].type == nvinfer1::DataType::kFLOAT); // 输出索引类型
// 绑定输入数据指针
const float* xyz = static_cast<const float*>(inputs[1]);
const float* newXyz;
if(inputs[2] == nullptr)
newXyz = xyz;
else
newXyz = static_cast<const float*>(inputs[2]);
const int* offset = static_cast<const int*>(inputs[3]);
const int* newOffset = static_cast<const int*>(inputs[4]);
int m = inputDesc[2].dims.d[0];
//std::cout<<"--------------"<<mSample<<std::endl;
// 绑定输出数据指针
int* idx = static_cast<int*>(outputs[0]); // 近邻索引输出: (m, nsample)
float* dist2 = static_cast<float*>(outputs[1]); // 近邻距离平方输出: (m, nsample)
cudaMemset(idx, 0, m * mSample * sizeof(int));
cudaMemset(dist2, 0, m * mSample * sizeof(float));
// 调用CUDA核函数执行KNN查询
knnquery_cuda_launcher(
m, // 总查询点数量
mSample, // 近邻数量k
xyz, // 原始点云数据
newXyz, // 查询点数据
offset, // 原始点云批次偏移
newOffset, // 查询点批次偏移
idx, // 输出索引
dist2, // 输出距离平方
stream // CUDA流
);
return STATUS_SUCCESS;
}
catch (std::exception const& e)
{
caughtError(e);
}
return -1;
}
// 工作空间大小
size_t knnQuery::getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
int nbInputs, const nvinfer1::PluginTensorDesc* outputs,
int nbOutputs) const noexcept
{
return 0;
}
// 输出数据类型:索引为INT32
DataType knnQuery::getOutputDataType(int index, DataType const* inputTypes, int nbInputs) const noexcept
{
//std::cout<<"getOutputDataType"<<std::endl;
PLUGIN_ASSERT(nbInputs == 5);
if(index==0) return DataType::kINT32;
if(index==1) return DataType::kFLOAT;
}
bool knnQuery::supportsFormatCombination(int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs, int nbOutputs) noexcept
{
//std::cout << "supportsFormatCombination" << std::endl;
PLUGIN_ASSERT(pos < nbInputs + nbOutputs);
if (pos == 0)
{
return (inOut[pos].type == nvinfer1::DataType::kINT32)
&& (inOut[pos].format == nvinfer1::PluginFormat::kLINEAR);
}
else if (pos == 1)
{
return (inOut[pos].type == nvinfer1::DataType::kFLOAT)
&& (inOut[pos].format == nvinfer1::PluginFormat::kLINEAR);
}
else if (pos == 2)
{
return (inOut[pos].type == nvinfer1::DataType::kFLOAT)
&& (inOut[pos].format == nvinfer1::PluginFormat::kLINEAR);
}
else if (pos == 3)
{
return (inOut[pos].type == nvinfer1::DataType::kINT32)
&& (inOut[pos].format == nvinfer1::PluginFormat::kLINEAR);
}
else if (pos == 4)
{
return (inOut[pos].type == nvinfer1::DataType::kINT32)
&& (inOut[pos].format == nvinfer1::PluginFormat::kLINEAR);
}
else if (pos == 5)
{
return (inOut[pos].type == nvinfer1::DataType::kINT32)
&& (inOut[pos].format == nvinfer1::PluginFormat::kLINEAR);
}
else if (pos == 6)
{
return (inOut[pos].type == nvinfer1::DataType::kFLOAT)
&& (inOut[pos].format == nvinfer1::PluginFormat::kLINEAR);
}
return false;
}
void knnQuery::configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) noexcept
{
//std::cout<<"configurePlugin"<<std::endl;
try
{
PLUGIN_ASSERT(nbInputs == 5 && nbOutputs == 2);
}
catch (std::exception const& e)
{
caughtError(e);
}
}
// 序列化:仅需保存采样点数
size_t knnQuery::getSerializationSize() const noexcept
{
//std::cout<<"getSerializationSize"<<std::endl;
return sizeof(int);
}
void knnQuery::serialize(void* buffer) const noexcept
{
//std::cout<<"serialize"<<std::endl;
//memcpy(buffer, &mNumSamples, sizeof(int)); // 此处参数为void*,与修正后的头文件匹配
*static_cast<int*>(buffer) = mSample;
}
// 克隆插件
nvinfer1::IPluginV2DynamicExt* knnQuery::clone() const noexcept
{
//std::cout<<"clone"<<std::endl;
try
{
return new knnQuery(mSample);
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
void knnQuery::destroy() noexcept
{
delete this;
}
// 命名空间管理
void knnQuery::setPluginNamespace(char const* pluginNamespace) noexcept
{
//std::cout<<"setPluginNamespace"<<std::endl;
try
{
mPluginNamespace = pluginNamespace;
}
catch (std::exception const& e)
{
caughtError(e);
}
}
char const* knnQuery::getPluginNamespace() const noexcept
{
//std::cout<<"getPluginNamespace"<<std::endl;
return mPluginNamespace.c_str();
}
// 插件创建器实现
PluginFieldCollection knnQueryCreator::mFC{};
std::vector<PluginField> knnQueryCreator::mPluginAttributes;
knnQueryCreator::knnQueryCreator()
{
//std::cout<<"knnQueryCreator"<<std::endl;
mPluginAttributes.clear();
mPluginAttributes.emplace_back(nvinfer1::PluginField("attr", nullptr, nvinfer1::PluginFieldType::kINT32));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* knnQueryCreator::getPluginName() const noexcept
{
//std::cout<<"getPluginName"<<std::endl;
return "knnquery";
}
char const* knnQueryCreator::getPluginVersion() const noexcept
{
//std::cout<<"getPluginVersion"<<std::endl;
return "1";
}
PluginFieldCollection const* knnQueryCreator::getFieldNames() noexcept
{
//std::cout<<"getFieldNames"<<std::endl;
return &mFC;
}
IPluginV2* knnQueryCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
{
//std::cout<<"createPlugin"<<std::endl;
try
{
int sample = 0; // 默认值
// 遍历字段集合,查找名为 "num_samples" 的参
for (int i = 0; i < fc->nbFields; ++i) {
const PluginField& field = fc->fields[i];
if (strcmp(field.name, "attr") == 0) {
// 验证参数类型和维度(确保是 int32 标量)
if (field.type == PluginFieldType::kINT32) {
sample = *static_cast<const int*>(field.data);
}
}
}
// std::cout<<"numSamples: "<<numSamples<<std::endl;
return new knnQuery(sample);
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* knnQueryCreator::deserializePlugin(char const* name, void const* serialData, size_t serialLength) noexcept
{
//std::cout<<"deserializePlugin"<<std::endl;
try
{
// This object will be deleted when the network is destroyed, which will
// call Concat::destroy()
IPluginV2Ext* plugin = new knnQuery(serialData, serialLength);
plugin->setPluginNamespace(mNamespace.c_str());
return plugin;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
void knnQueryCreator::setPluginNamespace(char const* libNamespace) noexcept
{
//std::cout<<"setPluginNamespace"<<std::endl;
mNamespace = libNamespace;
}
char const* knnQueryCreator::getPluginNamespace() const noexcept
{
//std::cout<<"getPluginNamespace"<<std::endl;
return mNamespace.c_str();
}
knnQuery.cu
#include <stdio.h>
#include <stdlib.h>
#include "NvInfer.h"
#include "knnQuery.h"
#include <cuda_runtime.h>
namespace nvinfer1
{
namespace plugin
{
#define THREADS_PER_BLOCK 256
#define DIVUP(a, b) ((a + b - 1) / b)
__device__ void swap_float(float *x, float *y)
{
float tmp = *x;
*x = *y;
*y = tmp;
}
__device__ void swap_int(int *x, int *y)
{
int tmp = *x;
*x = *y;
*y = tmp;
}
__device__ void reheap(float *dist, int *idx, int k)
{
int root = 0;
int child = root * 2 + 1;
while (child < k)
{
if(child + 1 < k && dist[child+1] > dist[child])
child++;
if(dist[root] > dist[child])
return;
swap_float(&dist[root], &dist[child]);
swap_int(&idx[root], &idx[child]);
root = child;
child = root * 2 + 1;
}
}
__device__ void heap_sort(float *dist, int *idx, int k)
{
int i;
for (i = k - 1; i > 0; i--)
{
swap_float(&dist[0], &dist[i]);
swap_int(&idx[0], &idx[i]);
reheap(dist, idx, i);
}
}
__device__ int get_bt_idx(int idx, const int *offset)
{
int i = 0;
// while (1)
// {
// if (idx < offset[i])
// break;
// else
// i++;
// }
return i;
}
__global__ void knnquery_cuda_kernel(int m, int nsample, const float *__restrict__ xyz, const float *__restrict__ new_xyz, const int *__restrict__ offset, const int *__restrict__ new_offset, int *__restrict__ idx, float *__restrict__ dist2) {
// input: xyz (n, 3) new_xyz (m, 3)
// output: idx (m, nsample) dist2 (m, nsample)
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (pt_idx >= m) return;
new_xyz += pt_idx * 3;
idx += pt_idx * nsample;
dist2 += pt_idx * nsample;
int bt_idx = get_bt_idx(pt_idx, new_offset);
int start;
if (bt_idx == 0)
start = 0;
else
start = offset[bt_idx - 1];
int end = offset[bt_idx];
float new_x = new_xyz[0];
float new_y = new_xyz[1];
float new_z = new_xyz[2];
float best_dist[100];
int best_idx[100];
for(int i = 0; i < nsample; i++){
best_dist[i] = 1e10;
best_idx[i] = start;
}
for(int i = start; i < end; i++){
float x = xyz[i * 3 + 0];
float y = xyz[i * 3 + 1];
float z = xyz[i * 3 + 2];
float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z);
if (d2 < best_dist[0]){
best_dist[0] = d2;
best_idx[0] = i;
reheap(best_dist, best_idx, nsample);
}
}
heap_sort(best_dist, best_idx, nsample);
for(int i = 0; i < nsample; i++){
idx[i] = best_idx[i];
dist2[i] = best_dist[i];
}
}
void knnquery_cuda_launcher(int m, int nsample, const float *xyz, const float *new_xyz, const int *offset, const int *new_offset, int *idx, float *dist2, cudaStream_t stream) {
// input: new_xyz: (m, 3), xyz: (n, 3), idx: (m, nsample)
dim3 blocks(DIVUP(m, THREADS_PER_BLOCK));
dim3 threads(THREADS_PER_BLOCK);
knnquery_cuda_kernel<<<blocks, threads, 0>>>(m, nsample, xyz, new_xyz, offset, new_offset, idx, dist2);
}
}
}
CMakeLists.txt
file(GLOB SRCS *.cpp)
set(PLUGIN_SOURCES ${PLUGIN_SOURCES} ${SRCS})
set(PLUGIN_SOURCES ${PLUGIN_SOURCES} PARENT_SCOPE)
file(GLOB CU_SRCS *.cu)
set(PLUGIN_CU_SOURCES ${PLUGIN_CU_SOURCES} ${CU_SRCS})
set(PLUGIN_CU_SOURCES ${PLUGIN_CU_SOURCES} PARENT_SCOPE)
在TensorRT/plugin/inferPlugin.cpp的开头添加
#include "knnQuery/knnQuery.h"
并在initLibNvInferPlugins函数中添加
initializePlugin<nvinfer1::plugin::knnQueryCreator>(logger, libNamespace);
在TensorRT/plugin/CMakeLists.txt的set(PLUGIN_LISTS添加
knnQuery
在TensorRT/CMakeLists.txt中设置TRT_LIB_DIR、TRT_OUT_DIR,再重新编译tensorrt。
tensorrt推理测试
运行下面的命令把onnx 转为engine模型:
TensorRT-10.6.0.26/bin/trtexec --onnx=knnquery.onnx --saveEngine=knnquery.engine
编写python推理脚本:
import numpy as np
import tensorrt as trt
import common
logger = trt.Logger(trt.Logger.WARNING)
trt.init_libnvinfer_plugins(logger, "")
with open("knnquery.engine", "rb") as f, trt.Runtime(logger) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
inputs, outputs, bindings, stream = common.allocate_buffers(engine)
# nsample = 8
xyz = np.loadtxt("xyz.txt").reshape(47358, 3)
new_xyz = np.loadtxt("new_xyz.txt").reshape(47358, 3)
offset = np.array([47358]).astype(np.int32)
new_offset = np.array([47358]).astype(np.int32)
# np.copyto(inputs[0].host, nsample)
np.copyto(inputs[0].host, xyz.ravel())
np.copyto(inputs[1].host, new_xyz.ravel())
np.copyto(inputs[2].host, offset.ravel())
np.copyto(inputs[3].host, new_offset.ravel())
output = common.do_inference(context,engine=engine, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
print(output)


840

被折叠的 条评论
为什么被折叠?



