YOLOE模型onnxruntime和tensorrt部署

部署运行你感兴趣的模型镜像

onnx模型导出

from ultralytics import YOLOE

# Initialize a YOLOE model
model = YOLOE("yoloe-11l-seg.pt")
names = ["person", "bus"]
model.set_classes(names, model.get_text_pe(names))
model.export(format="onnx") 

导出的onnx模型结构如下:在这里插入图片描述

onnxruntime部署

import cv2
import numpy as np
import onnxruntime
from utils import *


class_names = ["person", "bus"]  
input_shape = (640, 640) 
score_threshold = 0.1 
nms_threshold = 0.5


def post_process(outputs):     
    boxes = []
    scores = []
    class_ids = []
    preds = []
    output = np.squeeze(outputs[0])
    classes_scores = output[4:(4+len(class_names)), ...]  
       
    for i in range(output.shape[1]):              
        class_id = np.argmax(classes_scores[...,i])
        score = classes_scores[class_id][i]
        if score > score_threshold:
            boxes.append(np.concatenate([output[:4, i], np.array([score, class_id])]))
            scores.append(score)
            class_ids.append(class_id) 
            preds.append(output[..., i]) 
            
    boxes = np.array(boxes)
    boxes = xywh2xyxy(boxes)
    scores = np.array(scores)
    indices = nms(boxes, scores, score_threshold, nms_threshold) 
    boxes = boxes[indices]

    masks_in = np.array(preds)[indices][..., -32:]
    proto = np.squeeze(outputs[1]).astype(dtype=np.float32)
    c, mh, mw = proto.shape 
    masks = (masks_in @ proto.reshape(c, -1)).reshape(-1, mh, mw)    
    downsampled_bboxes = boxes.copy()
    downsampled_bboxes[:, 0] *= mw / input_shape[0]
    downsampled_bboxes[:, 2] *= mw / input_shape[0]
    downsampled_bboxes[:, 3] *= mh / input_shape[1]
    downsampled_bboxes[:, 1] *= mh / input_shape[1]       
    masks = crop_mask(masks, downsampled_bboxes)
    boxes = scale_boxes(boxes, input_shape, image.shape)
    resized_masks = []
    for mask in masks:
        mask = cv2.resize(mask, input_shape, cv2.INTER_LINEAR)
        mask = scale_mask(mask, input_shape, image.shape)
        resized_masks.append(mask)
    resized_masks = np.array(resized_masks)
    resized_masks = resized_masks > 0     
    return boxes, resized_masks


if __name__=="__main__":
    onnx_session = onnxruntime.InferenceSession('yoloe-11l-seg.onnx', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        
    input_name = []
    for node in onnx_session.get_inputs():
        input_name.append(node.name)

    image = cv2.imread('bus.jpg', -1)
    input = letterbox(image, input_shape)
    input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
    input = input / 255.0
    input_tensor = []
    input_tensor.append(input)

    inputs = {}
    inputs[input_name[0]] = np.array(input_tensor)
  
    outputs = onnx_session.run(None, inputs)
    
    boxes, resized_masks = post_process(outputs)
    
    result = draw_result(image, boxes, resized_masks)
    cv2.imwrite('result.jpg', result)

utils.py

'''
Author: taifyang 
Date: 2024-06-12 22:23:07
LastEditors: taifyang 58515915+taifyang@users.noreply.github.com
LastEditTime: 2024-11-22 22:43:15
Description: utilities functions
'''


import cv2
import numpy as np


'''
description:                Non-Maximum Suppression
param {*} boxes             detect bounding boxes
param {*} scores            detect scores
param {*} score_threshold   detect score threshold
param {*} nms_threshold     IOU threshold
return {*}                  detect indices
'''
def nms(boxes, scores, score_threshold, nms_threshold):
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    areas = (y2 - y1 + 1) * (x2 - x1 + 1)
    keep = []
    index = scores.argsort()[::-1] 

    while index.size > 0:
        i = index[0]
        keep.append(i)
        x11 = np.maximum(x1[i], x1[index[1:]]) 
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])
        w = np.maximum(0, x22 - x11 + 1)                              
        h = np.maximum(0, y22 - y11 + 1) 
        overlaps = w * h
        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
        idx = np.where(ious <= nms_threshold)[0]
        index = index[idx + 1]
    return keep


'''
description:    convert xywh bounding boxes to x1y1x2y2 bounding boxes
param {*} x     xywh bounding boxes
return {*}      x1y1x2y2 bounding boxes
'''
def xywh2xyxy(x):
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2
    y[:, 1] = x[:, 1] - x[:, 3] / 2
    y[:, 2] = x[:, 0] + x[:, 2] / 2
    y[:, 3] = x[:, 1] + x[:, 3] / 2
    return y


'''
description:        letterbox image process
param {*} im        input image
param {*} new_shape output shape
param {*} color     filled color
return {*}          output image
'''
def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    
    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
    dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im


'''
description:            scale boxes
param {*} boxes         bounding boxes
param {*} input_shape   input image shape
param {*} output_shape  output image shape
return {*}              scaled boxes
'''
def scale_boxes(boxes, input_shape, output_shape):
    # Rescale boxes (xyxy) from self.inputs_shape to shape
    gain = min(input_shape[0] / output_shape[0], input_shape[1] / output_shape[1])  # gain  = old / new
    pad = (input_shape[1] - output_shape[1] * gain) / 2, (input_shape[0] - output_shape[0] * gain) / 2  # wh padding
    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, output_shape[1])  # x1, x2
    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, output_shape[0])  # y1, y2
    return boxes


'''
description:    crop mask
param {*} masks input masks
param {*} boxes bounding boxes
return {*}      cropped masks
'''
def crop_mask(masks, boxes):
    n, h, w = masks.shape
    x1, y1, x2, y2 = np.split(boxes[..., :4], 4, axis=1)
    x1, y1, x2, y2 = np.expand_dims(x1, 2), np.expand_dims(y1, 2), np.expand_dims(x2, 2), np.expand_dims(y2, 2)
    r = np.arange(w)[None, None, :]
    c = np.arange(h)[None, :, None]
    cropped_masks = masks * ((r >= x1) & (r < x2) & (c >= y1) & (c < y2))
    return cropped_masks


'''
description:            scale mask
param {*} mask          input masks
param {*} input_shape   input image shape
param {*} output_shape  output image shape
return {*}              scaled masks
'''
def scale_mask(mask, input_shape, output_shape):
    gain = min(input_shape[0] / output_shape[0], input_shape[1] / output_shape[1])  # gain  = old / new
    pad = (input_shape[1] - output_shape[1] * gain) / 2, (input_shape[0] - output_shape[0] * gain) / 2  # wh padding
    mask = mask[int(pad[1]):mask.shape[1]-int(pad[1]), int(pad[0]):mask.shape[0]-int(pad[0])]
    mask = cv2.resize(mask, (output_shape[1], output_shape[0]), cv2.INTER_LINEAR)
    return mask


'''
description:            draw result
param {*} image         input image
param {*} preds         prediction result
param {*} masks         masks
param {*} input_shape   input image shape
return {*}              output image
'''
def draw_result(image, preds, masks=[]):
    image_copy = image.copy()   
    boxes = preds[...,:4].astype(np.int32) 
    scores = preds[...,4]
    classes = preds[...,5].astype(np.int32)
    
    for mask in masks:
        image_copy[mask] = [np.random.randint(0,256), np.random.randint(0,256), np.random.randint(0,256)]
    result = (image*0.5 + image_copy*0.5).astype(np.uint8)
    
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        cv2.rectangle(result, (top, left), (right, bottom), (255, 0, 0), 1)
        cv2.putText(result, 'class:{0} score:{1:.2f}'.format(cl, score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)
    return result

tensorrt部署

import cv2
import numpy as np
import tensorrt as trt
from common import *
from utils import *


class_names = ["person", "bus"]  
input_shape = (640, 640) 
score_threshold = 0.1 
nms_threshold = 0.5


def post_process(outputs):     
    boxes = []
    scores = []
    class_ids = []
    preds = []
    output = np.squeeze(outputs[0].host.astype(np.float32).reshape(38, 8400))
    classes_scores = output[4:(4+len(class_names)), ...]  
       
    for i in range(output.shape[1]):              
        class_id = np.argmax(classes_scores[...,i])
        score = classes_scores[class_id][i]
        if score > score_threshold:
            boxes.append(np.concatenate([output[:4, i], np.array([score, class_id])]))
            scores.append(score)
            class_ids.append(class_id) 
            preds.append(output[..., i]) 
            
    boxes = np.array(boxes)
    boxes = xywh2xyxy(boxes)
    scores = np.array(scores)
    indices = nms(boxes, scores, score_threshold, nms_threshold) 
    boxes = boxes[indices]

    masks_in = np.array(preds)[indices][..., -32:]
    proto = np.squeeze(outputs[1].host.astype(dtype=np.float32).reshape(32, 160, 160))
    c, mh, mw = proto.shape 
    masks = (masks_in @ proto.reshape(c, -1)).reshape(-1, mh, mw)    
    downsampled_bboxes = boxes.copy()
    downsampled_bboxes[:, 0] *= mw / input_shape[0]
    downsampled_bboxes[:, 2] *= mw / input_shape[0]
    downsampled_bboxes[:, 3] *= mh / input_shape[1]
    downsampled_bboxes[:, 1] *= mh / input_shape[1]       
    masks = crop_mask(masks, downsampled_bboxes)
    boxes = scale_boxes(boxes, input_shape, image.shape)
    resized_masks = []
    for mask in masks:
        mask = cv2.resize(mask, input_shape, cv2.INTER_LINEAR)
        mask = scale_mask(mask, input_shape, image.shape)
        resized_masks.append(mask)
    resized_masks = np.array(resized_masks)
    resized_masks = resized_masks > 0     
    return boxes, resized_masks


if __name__=="__main__":
    image = cv2.imread('bus.jpg', -1)
    input = letterbox(image, input_shape)
    input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
    input = input / 255.0   
    
    logger = trt.Logger(trt.Logger.WARNING)
    with open("yoloe-11l-seg.engine", "rb") as f, trt.Runtime(logger) as runtime:
        engine = runtime.deserialize_cuda_engine(f.read())
    context = engine.create_execution_context()
    inputs, outputs, bindings, stream = allocate_buffers(engine)

    np.copyto(inputs[0].host, input.ravel())
    do_inference(context, engine, bindings, inputs, outputs, stream)
    
    boxes, resized_masks = post_process(outputs)
    
    result = draw_result(image, boxes, resized_masks)
    cv2.imwrite('result.jpg', result)

utils.py

'''
Author: taifyang 
Date: 2024-06-12 22:23:07
LastEditors: taifyang 58515915+taifyang@users.noreply.github.com
LastEditTime: 2024-11-22 22:43:15
Description: utilities functions
'''


import cv2
import numpy as np


'''
description:                Non-Maximum Suppression
param {*} boxes             detect bounding boxes
param {*} scores            detect scores
param {*} score_threshold   detect score threshold
param {*} nms_threshold     IOU threshold
return {*}                  detect indices
'''
def nms(boxes, scores, score_threshold, nms_threshold):
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    areas = (y2 - y1 + 1) * (x2 - x1 + 1)
    keep = []
    index = scores.argsort()[::-1] 

    while index.size > 0:
        i = index[0]
        keep.append(i)
        x11 = np.maximum(x1[i], x1[index[1:]]) 
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])
        w = np.maximum(0, x22 - x11 + 1)                              
        h = np.maximum(0, y22 - y11 + 1) 
        overlaps = w * h
        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
        idx = np.where(ious <= nms_threshold)[0]
        index = index[idx + 1]
    return keep


'''
description:    convert xywh bounding boxes to x1y1x2y2 bounding boxes
param {*} x     xywh bounding boxes
return {*}      x1y1x2y2 bounding boxes
'''
def xywh2xyxy(x):
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2
    y[:, 1] = x[:, 1] - x[:, 3] / 2
    y[:, 2] = x[:, 0] + x[:, 2] / 2
    y[:, 3] = x[:, 1] + x[:, 3] / 2
    return y


'''
description:        letterbox image process
param {*} im        input image
param {*} new_shape output shape
param {*} color     filled color
return {*}          output image
'''
def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    
    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
    dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im


'''
description:            scale boxes
param {*} boxes         bounding boxes
param {*} input_shape   input image shape
param {*} output_shape  output image shape
return {*}              scaled boxes
'''
def scale_boxes(boxes, input_shape, output_shape):
    # Rescale boxes (xyxy) from self.inputs_shape to shape
    gain = min(input_shape[0] / output_shape[0], input_shape[1] / output_shape[1])  # gain  = old / new
    pad = (input_shape[1] - output_shape[1] * gain) / 2, (input_shape[0] - output_shape[0] * gain) / 2  # wh padding
    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, output_shape[1])  # x1, x2
    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, output_shape[0])  # y1, y2
    return boxes


'''
description:    crop mask
param {*} masks input masks
param {*} boxes bounding boxes
return {*}      cropped masks
'''
def crop_mask(masks, boxes):
    n, h, w = masks.shape
    x1, y1, x2, y2 = np.split(boxes[..., :4], 4, axis=1)
    x1, y1, x2, y2 = np.expand_dims(x1, 2), np.expand_dims(y1, 2), np.expand_dims(x2, 2), np.expand_dims(y2, 2)
    r = np.arange(w)[None, None, :]
    c = np.arange(h)[None, :, None]
    cropped_masks = masks * ((r >= x1) & (r < x2) & (c >= y1) & (c < y2))
    return cropped_masks


'''
description:            scale mask
param {*} mask          input masks
param {*} input_shape   input image shape
param {*} output_shape  output image shape
return {*}              scaled masks
'''
def scale_mask(mask, input_shape, output_shape):
    gain = min(input_shape[0] / output_shape[0], input_shape[1] / output_shape[1])  # gain  = old / new
    pad = (input_shape[1] - output_shape[1] * gain) / 2, (input_shape[0] - output_shape[0] * gain) / 2  # wh padding
    mask = mask[int(pad[1]):mask.shape[1]-int(pad[1]), int(pad[0]):mask.shape[0]-int(pad[0])]
    mask = cv2.resize(mask, (output_shape[1], output_shape[0]), cv2.INTER_LINEAR)
    return mask


'''
description:            draw result
param {*} image         input image
param {*} preds         prediction result
param {*} masks         masks
param {*} input_shape   input image shape
return {*}              output image
'''
def draw_result(image, preds, masks=[]):
    image_copy = image.copy()   
    boxes = preds[...,:4].astype(np.int32) 
    scores = preds[...,4]
    classes = preds[...,5].astype(np.int32)
    
    for mask in masks:
        image_copy[mask] = [np.random.randint(0,256), np.random.randint(0,256), np.random.randint(0,256)]
    result = (image*0.5 + image_copy*0.5).astype(np.uint8)
    
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        cv2.rectangle(result, (top, left), (right, bottom), (255, 0, 0), 1)
        cv2.putText(result, 'class:{0} score:{1:.2f}'.format(cl, score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)
    return result

common.py

#
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import argparse
import os
import ctypes
from typing import Optional, List

import numpy as np
import tensorrt as trt
from cuda import cuda, cudart

try:
    # Sometimes python does not understand FileNotFoundError
    FileNotFoundError
except NameError:
    FileNotFoundError = IOError

EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)

def check_cuda_err(err):
    if isinstance(err, cuda.CUresult):
        if err != cuda.CUresult.CUDA_SUCCESS:
            raise RuntimeError("Cuda Error: {}".format(err))
    if isinstance(err, cudart.cudaError_t):
        if err != cudart.cudaError_t.cudaSuccess:
            raise RuntimeError("Cuda Runtime Error: {}".format(err))
    else:
        raise RuntimeError("Unknown error type: {}".format(err))

def cuda_call(call):
    err, res = call[0], call[1:]
    check_cuda_err(err)
    if len(res) == 1:
        res = res[0]
    return res

def GiB(val):
    return val * 1 << 30


def add_help(description):
    parser = argparse.ArgumentParser(description=description, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    args, _ = parser.parse_known_args()


def find_sample_data(description="Runs a TensorRT Python sample", subfolder="", find_files=[], err_msg=""):
    """
    Parses sample arguments.

    Args:
        description (str): Description of the sample.
        subfolder (str): The subfolder containing data relevant to this sample
        find_files (str): A list of filenames to find. Each filename will be replaced with an absolute path.

    Returns:
        str: Path of data directory.
    """

    # Standard command-line arguments for all samples.
    kDEFAULT_DATA_ROOT = os.path.join(os.sep, "usr", "src", "tensorrt", "data")
    parser = argparse.ArgumentParser(description=description, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "-d",
        "--datadir",
        help="Location of the TensorRT sample data directory, and any additional data directories.",
        action="append",
        default=[kDEFAULT_DATA_ROOT],
    )
    args, _ = parser.parse_known_args()

    def get_data_path(data_dir):
        # If the subfolder exists, append it to the path, otherwise use the provided path as-is.
        data_path = os.path.join(data_dir, subfolder)
        if not os.path.exists(data_path):
            if data_dir != kDEFAULT_DATA_ROOT:
                print("WARNING: " + data_path + " does not exist. Trying " + data_dir + " instead.")
            data_path = data_dir
        # Make sure data directory exists.
        if not (os.path.exists(data_path)) and data_dir != kDEFAULT_DATA_ROOT:
            print(
                "WARNING: {:} does not exist. Please provide the correct data path with the -d option.".format(
                    data_path
                )
            )
        return data_path

    data_paths = [get_data_path(data_dir) for data_dir in args.datadir]
    return data_paths, locate_files(data_paths, find_files, err_msg)


def locate_files(data_paths, filenames, err_msg=""):
    """
    Locates the specified files in the specified data directories.
    If a file exists in multiple data directories, the first directory is used.

    Args:
        data_paths (List[str]): The data directories.
        filename (List[str]): The names of the files to find.

    Returns:
        List[str]: The absolute paths of the files.

    Raises:
        FileNotFoundError if a file could not be located.
    """
    found_files = [None] * len(filenames)
    for data_path in data_paths:
        # Find all requested files.
        for index, (found, filename) in enumerate(zip(found_files, filenames)):
            if not found:
                file_path = os.path.abspath(os.path.join(data_path, filename))
                if os.path.exists(file_path):
                    found_files[index] = file_path

    # Check that all files were found
    for f, filename in zip(found_files, filenames):
        if not f or not os.path.exists(f):
            raise FileNotFoundError(
                "Could not find {:}. Searched in data paths: {:}\n{:}".format(filename, data_paths, err_msg)
            )
    return found_files


class HostDeviceMem:
    """Pair of host and device memory, where the host memory is wrapped in a numpy array"""
    def __init__(self, size: int, dtype: np.dtype):
        nbytes = size * dtype.itemsize
        host_mem = cuda_call(cudart.cudaMallocHost(nbytes))
        pointer_type = ctypes.POINTER(np.ctypeslib.as_ctypes_type(dtype))

        self._host = np.ctypeslib.as_array(ctypes.cast(host_mem, pointer_type), (size,))
        self._device = cuda_call(cudart.cudaMalloc(nbytes))
        self._nbytes = nbytes

    @property
    def host(self) -> np.ndarray:
        return self._host

    @host.setter
    def host(self, arr: np.ndarray):
        if arr.size > self.host.size:
            raise ValueError(
                f"Tried to fit an array of size {arr.size} into host memory of size {self.host.size}"
            )
        np.copyto(self.host[:arr.size], arr.flat, casting='safe')

    @property
    def device(self) -> int:
        return self._device

    @property
    def nbytes(self) -> int:
        return self._nbytes

    def __str__(self):
        return f"Host:\n{self.host}\nDevice:\n{self.device}\nSize:\n{self.nbytes}\n"

    def __repr__(self):
        return self.__str__()

    def free(self):
        cuda_call(cudart.cudaFree(self.device))
        cuda_call(cudart.cudaFreeHost(self.host.ctypes.data))


# Allocates all buffers required for an engine, i.e. host/device inputs/outputs.
# If engine uses dynamic shapes, specify a profile to find the maximum input & output size.
def allocate_buffers(engine: trt.ICudaEngine, profile_idx: Optional[int] = None):
    inputs = []
    outputs = []
    bindings = []
    stream = cuda_call(cudart.cudaStreamCreate())
    tensor_names = [engine.get_tensor_name(i) for i in range(engine.num_io_tensors)]
    for binding in tensor_names:
        # get_tensor_profile_shape returns (min_shape, optimal_shape, max_shape)
        # Pick out the max shape to allocate enough memory for the binding.
        shape = engine.get_tensor_shape(binding) if profile_idx is None else engine.get_tensor_profile_shape(binding, profile_idx)[-1]
        shape_valid = np.all([s >= 0 for s in shape])
        if not shape_valid and profile_idx is None:
            raise ValueError(f"Binding {binding} has dynamic shape, " +\
                "but no profile was specified.")
        size = trt.volume(shape)
        if engine.has_implicit_batch_dimension:
            size *= engine.max_batch_size
        dtype = np.dtype(trt.nptype(engine.get_tensor_dtype(binding)))

        # Allocate host and device buffers
        bindingMemory = HostDeviceMem(size, dtype)

        # Append the device buffer to device bindings.
        bindings.append(int(bindingMemory.device))

        # Append to the appropriate list.
        if engine.get_tensor_mode(binding) == trt.TensorIOMode.INPUT:
            inputs.append(bindingMemory)
        else:
            outputs.append(bindingMemory)
    return inputs, outputs, bindings, stream


# Frees the resources allocated in allocate_buffers
def free_buffers(inputs: List[HostDeviceMem], outputs: List[HostDeviceMem], stream: cudart.cudaStream_t):
    for mem in inputs + outputs:
        mem.free()
    cuda_call(cudart.cudaStreamDestroy(stream))


# Wrapper for cudaMemcpy which infers copy size and does error checking
def memcpy_host_to_device(device_ptr: int, host_arr: np.ndarray):
    nbytes = host_arr.size * host_arr.itemsize
    cuda_call(cudart.cudaMemcpy(device_ptr, host_arr, nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice))


# Wrapper for cudaMemcpy which infers copy size and does error checking
def memcpy_device_to_host(host_arr: np.ndarray, device_ptr: int):
    nbytes = host_arr.size * host_arr.itemsize
    cuda_call(cudart.cudaMemcpy(host_arr, device_ptr, nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost))


def _do_inference_base(inputs, outputs, stream, execute_async):
    # Transfer input data to the GPU.
    kind = cudart.cudaMemcpyKind.cudaMemcpyHostToDevice
    [cuda_call(cudart.cudaMemcpyAsync(inp.device, inp.host, inp.nbytes, kind, stream)) for inp in inputs]
    # Run inference.
    execute_async()
    # Transfer predictions back from the GPU.
    kind = cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost
    [cuda_call(cudart.cudaMemcpyAsync(out.host, out.device, out.nbytes, kind, stream)) for out in outputs]
    # Synchronize the stream
    cuda_call(cudart.cudaStreamSynchronize(stream))
    # Return only the host outputs.
    return [out.host for out in outputs]


def do_inference(context, engine, bindings, inputs, outputs, stream):
    def execute_async_func():
        context.execute_async_v3(stream_handle=stream)
    # Setup context tensor address.
    num_io = engine.num_io_tensors
    for i in range(num_io):
        context.set_tensor_address(engine.get_tensor_name(i), bindings[i])
    return _do_inference_base(inputs, outputs, stream, execute_async_func)

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

给算法爸爸上香

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值