【ICML2022】深度学习中的协同和对称:数据、模型和推理算法之间的交互

3d179b69f3974f2150916e9220045ce8.png

来源:专知
本文为论文介绍,建议阅读5分钟
当这些对称性与数据分布的对称性相容时,学习效率最高。

fc5303ce3337e652a9a0cea4e2e353cf.png

尽管人们普遍认为高维学习面临维数灾难,但现代机器学习方法往往表现出惊人的能力,可以在不使用大量数据的情况下解决各种具有挑战性的现实世界学习问题。这些方法究竟是如何打破这一诅咒的,仍然是深度学习理论中一个根本的开放问题。虽然以前的努力通过研究数据(D)、模型(M)和推理算法(I)作为独立模块来研究这个问题,但在本文中,我们将三元组(D, M, I)作为一个集成系统来分析,并识别有助于减轻维度诅咒的重要协同作用。我们首先研究了与各种学习算法(M, I)相关的基本对称性,重点关注深度学习中的四种原型架构:全连接网络(FCN)、本地连接网络(LCN)和带池化和不带池化的卷积网络(GAP/VEC)。我们发现,当这些对称性与数据分布的对称性相容时,学习效率最高,而当(D, M, I)三元组中的任何成员不一致或次优时,学习效率显著下降。

https://arxiv.org/pdf/2207.04612.pdf

5185f0ed6caf04a7d4c407629c90cc04.png

f717fe92bd08d3299879c1412d3e5cde.png

f26f885e714d80a8ff70ab7d5f1e2720.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值