模型剪枝算法——L1正则化BN层的γ因子

ICCV在2017年刊登了一篇经典论文《 Learning Efficient Convolutional Networks through Network Slimming》。在神经网络的卷积操作之后会得到多个特征图,通过策略突出重要的特征达到对网络瘦身的目的。在该论文中使用的剪枝策略就是稀疏化BN层中的缩放因子 \gamma
BatchNorm的本质是使输入数据标准化,关于0对称,数据分布到一个量级中,在训练的时候有利于加速收敛
BatchNorm本来公式:
\hat{x} = \frac{x^{k}-E[x^{k}]}{\sqrt{var[x^{k}]}}
在实际应用时,引入了两个可训练的参数 \gamma 、 \beta。后文会详解介绍。
为什么说输入数据分布不均匀,网络分布不容易收敛,以sigmoid为例进行介绍。sigmoid函数在神经网络中常用来做激活函数,为了将非线性引入神经网络中,使得神经网络具有更加复杂的决策边界。
                        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值