LeetCode-Construct Binary Tree from Preorder and Inorder Traversal

本文介绍了一种使用前序遍历和中序遍历构建二叉树的方法,并提供了一个C++实现示例。讨论了递归算法的应用及注意事项,强调了避免内存溢出的重要性。

Given preorder and inorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

class Solution {
public:
TreeNode * buildTree(vector<int>& preorder, int preBegin, int preEnd, vector<int>& inorder, int inBegin, int inEnd)
 {
    TreeNode*root =NULL;

    if (preEnd >= preBegin)
    {
        root = new TreeNode(preorder[preBegin]);
        int n = inEnd-inBegin+1;
        int rootIndex = 0;
        for (int i = inBegin; i <= inEnd; ++i)
        {
            if (inorder[i] == preorder[preBegin])
            {
                rootIndex = i;
                break;
            }
        }

        if (rootIndex!=inBegin)
        {
            root->left = buildTree(preorder, preBegin+1, preBegin+(rootIndex-inBegin), inorder, inBegin, rootIndex-1);
        }
        if (rootIndex!=inEnd)
        {
            root->right = buildTree(preorder, preBegin+1+(rootIndex-inBegin), preEnd, inorder, rootIndex+1, inEnd);
        }
    }
    return root;  
 }

    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        return buildTree(preorder, 0, preorder.size()-1, inorder, 0, inorder.size()-1);
    }
};

注意:在利用递归算法解题时要注意节省内存。最初觉得通过传递下标参数计算麻烦,而试图每次重新构造vector数据进行参数传递,如下所示:

        if (rootIndex!=0)
        {
            vector<int>p(preorder.Begin()+1, preorder.Begin()+rootIndex+1);
            vector<int>q(inorder.Begin(), inorder.Begin()+rootIndex);
            root->left = buildTree(p,q);
        }

这么做有两个问题:
1. 在用迭代器初始化vector时,第二个迭代器要指向有效数据的下一个数;
2. 容易造成内存溢出的问题。(在leetcode中运行时就出现这个问题)。

下面是该段代码的 **Visual Studio 可运行完整版本**,包含: - `TreeNode` 节点定义 - `buildTree` 函数的完整实现(从前序和中遍历构造二叉树- 主函数中测试用例 - 打印构建后的二叉树前序遍历验证) --- ## ✅ Visual Studio 完整运行代码 ```cpp #include <iostream> #include <vector> #include <algorithm> #include <ranges> using namespace std; // 二叉树节点定义 struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {} }; class Solution { public: TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { if (preorder.empty()) { return nullptr; } // 查找根节点在中遍历中的位置 auto root_it = ranges::find(inorder, preorder[0]); int left_size = distance(inorder.begin(), root_it); // 左子树节点数量 // 划分左子树和右子树的前序和中列 vector<int> pre_left(preorder.begin() + 1, preorder.begin() + 1 + left_size); vector<int> pre_right(preorder.begin() + 1 + left_size, preorder.end()); vector<int> in_left(inorder.begin(), inorder.begin() + left_size); vector<int> in_right(inorder.begin() + 1 + left_size, inorder.end()); // 递归构建左右子树 TreeNode* left = buildTree(pre_left, in_left); TreeNode* right = buildTree(pre_right, in_right); return new TreeNode(preorder[0], left, right); } // 前序遍历打印二叉树 void preorderPrint(TreeNode* root) { if (root == nullptr) { cout << "null "; return; } cout << root->val << " "; preorderPrint(root->left); preorderPrint(root->right); } // 析构函数(手动释放内存) void deleteTree(TreeNode* root) { if (root == nullptr) return; deleteTree(root->left); deleteTree(root->right); delete root; } }; int main() { Solution sol; // 示例输入 vector<int> preorder = {3, 9, 20, 15, 7}; vector<int> inorder = {9, 3, 15, 20, 7}; // 构建二叉树 TreeNode* root = sol.buildTree(preorder, inorder); // 打印前序遍历结果以验证是否正确 cout << "构建的二叉树前序遍历结果: "; sol.preorderPrint(root); cout << endl; // 释放内存 sol.deleteTree(root); return 0; } ``` --- ## 📌 编译与运行说明(适用于 Visual Studio) 1. 打开 Visual Studio 2. 创建一个 **C++ 控制台应用程(Console Application)** 3. 删除默认生成的代码内容 4. 将上面的代码粘贴到 `.cpp` 文件中(如 `main.cpp`) 5. 确保你的编译器支持 **C++20**,因为使用了 `<ranges>` 和范围查找 - VS 2022 及以上版本支持 C++20 6. 按 `Ctrl + F5` 或点击 **“本地 Windows 调试器”** 运行程 --- ## 🧾 输出结果示例 ``` 构建的二叉树前序遍历结果: 3 9 null null 20 15 null null 7 null null ``` 说明构建成功,结构如下: ``` 3 / \ 9 20 / \ 15 7 ``` --- ## 🧠 代码解释 - `preorder[0]` 是当前子树的根节点。 - 在 `inorder` 中找到该根节点,左边就是左子树,右边就是右子树。 - 根据左子树大小,划分 `preorder` 中的左右子树。 - 递归构造左右子树。 - 最后返回构造好的当前子树根节点。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值