ICDM 2024于2024年12月9号-12月12号在阿联酋阿布扎比举行(Abu Dhabi, UAE)
本文总结了ICDM 2024有关时间序列(time series)的相关论文,如有疏漏,欢迎大家补充。
时间序列Topic:分类,预测,异常检测,基础模型等内容。总计9篇,其中regular4篇,short4篇,Demo 1篇。
Regular
- HyperTime: A Dynamic Hypergraph Approach for Time Series Classification
- Improving Time Series Encoding with Noise-Aware Self-Supervised Learning and an Efficient Encoder
- EMIT - Event Based Masked Auto Encoding for Irregular Time Series
- Feature Map Purification for Enhancing Adversarial Robustness of Deep Timeseries Classifiers
Short
- Matrix Profile for Anomaly Detection on Multidimensional Time Series
- Interdependency Matters: Graph Alignment for Multivariate Time Series Anomaly Detection
- ExoTST: Exogenous-Aware Temporal Sequence Transformer for Time Series Prediction
- Rank Supervised Contrastive Learning for Time Series Classification
Demo
- BiTSA: Leveraging Time Series Foundation Model for Building Energy Analytics
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
Regular
1 HyperTime: A Dynamic Hypergraph Approach for Time Series Classification
作者:Raneen Younis and Zahra Ahmadi
关键词:Time series classification, Dynamic hypergraph, Graph neural networks
2 Improving Time Series Encoding with Noise-Aware Self-Supervised Learning and an Efficient Encoder
链接:https://arxiv.org/abs/2306.06579
作者:Duy Nguyen Anh, Trang Tran, Hieu Pham Huy, Le Nguyen Phi, and Lam Nguyen Minh
关键词:Time series representation learning, Noise-resiliency training strategy, Inception
3 EMIT - Event Based Masked Auto Encoding for Irregular Time Series
链接:https://arxiv.org/abs/2409.16554
作者:Hrishikesh Patel, Ruihong Qiu, Adam Irwin, Shazia Sadiq, and Sen Wang
关键词:Irregular time series, Self-supervised learning, Healthcare
4 Feature Map Purification for Enhancing Adversarial Robustness of Deep Timeseries Classifiers
作者:Mubarak Abdu-Aguye, Zaigham Zaheer, and Karthik Nandakumar
关键词:adversarial robustness, feature maps, purification, timeseries, wavelets
Short
5 Matrix Profile for Anomaly Detection on Multidimensional Time Series
链接:https://arxiv.org/abs/2409.09298
作者:Chin-Chia Michael Yeh, Audrey Der, Uday Singh Saini, Vivian Lai, Yan Zheng, Junpeng Wang, Xin Dai, Zhongfang Zhuang, Yujie Fan, Huiyuan Chen, Prince Aboagye, Liang Wang, Wei Zhang, and Eamonn Keogh
关键词:time series, anomaly detection, multidimensionality
6 Interdependency Matters: Graph Alignment for Multivariate Time Series Anomaly Detection
链接:https://arxiv.org/abs/2410.08877
作者:Yuanyi Wang, Haifeng Sun, Chengsen Wang, Mengde Zhu, Wei Tang, Jingyu Wang, Qi Qi, Zirui Zhuang, and Jianxin Liao
关键词:multivariate time series, anomaly detection, graph alignment, unsupervised learning
7 ExoTST: Exogenous-Aware Temporal Sequence Transformer for Time Series Prediction
链接:https://arxiv.org/abs/2410.12184
作者:Kshitij Tayal, Arvind Renganathan, Xiaowei Jia, Vipin Kumar, and Dan Lu
关键词:Exogenous Variables, Modality Fusion
8 Rank Supervised Contrastive Learning for Time Series Classification
链接:https://arxiv.org/abs/2401.18057
作者:Qianying Ren, Dongsheng Luo, and Dongjin Song
关键词:time series classification, representation learning, contrastive learning
Demo
9 BiTSA: Leveraging Time Series Foundation Model for Building Energy Analytics
链接:https://arxiv.org/abs/2412.14175
作者:Xiachong Lin, Arian Prabowo, Imran Razzak, Hao Xue, Matthew Amos, Sam Behrens, and Flora Salim
关键词:基础模型, 能源时间序列
ICDM 2024接受论文:https://icdm2024.org/accepted_papers/
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅