行列式(determinants)的几何意义

The determinant of a matrix is the factor by which areas are scaled by this matrix.

Because matrices are linear transformations it is enough to know the scaling factor for one single area to know the scaling factor for all areas. Let’s go back to our example:

 

The rectangle inscribed by the pink and blue unit vectors and has an area of 1. After applying our matrix transformation, this rectangle has turned into a parallelogram with base 2 and height 2. So it has an area of 4. This means, that our matrix scales areas by a factor of 4. Therefore, the determinant of our matrix is 4. Neat, isn’t it?

There is one caveat to the story: Determinants can be negative! If we start with an area of 1 and scale it by a negative factor, we would end up with a negative area. And negative areas are nonsense. So how can we make sense of our nice geometric definition in the presence of negative determinants? Luckily the fix is straightforward: If a matrix has a negative determinant, let’s say -2, areas are scaled by 2. The minus just means that space reversed its orientation. “What does that now even mean?”, you might rightfully ask. Let’s take a look:

We can see that the given matrix scales areas by a factor of 2. If we look closely we further notice that the blue vector was on the right of the pink vector but ended up on the left side. This is what’s meant by “space reversed its orientation”. That’s why the determinant of the matrix is not 2 but -2. Including negative determinants we get the full picture:

The determinant of a matrix is the signed factor by which areas are scaled by this matrix. If the sign is negative the matrix reverses orientation.

All our examples were two-dimensional. It’s hard to draw higher-dimensional graphs. The geometric definition of determinants applies for higher dimensions just as it does for two. In three-dimensional space, the determinant is the signed scaling factor for volumes and in even higher dimensions for hypervolumes.

 

### 关于交换环中的行列式乘法规则 在交换环 \( R \) 中,对于两个方阵 \( A, B \in M_n(R) \),其对应的行列式满足如下性质: \[ \text{det}(AB) = \text{det}(A)\text{det}(B) \] 这一结论不仅适用于实数域上的矩阵,在更广泛的交换环中同样成立。该性质表明即使是在抽象的代数结构下,行列式的乘法依然保持良好的一致性[^1]。 当考虑具体的计算过程时,可以利用行列式的展开定理来验证上述关系。例如给定三个元素分别来自不同位置的三阶行列式\( A \) 和 \( B \),通过直接计算两者乘积后的行列式并与各自行列式的乘积累次对比可得出一致的结果[^2]。 值得注意的是,在讨论基于交换环上矩阵运算及其行列式特性时,还需关注到其他基本属性的应用,比如行变换对行列式的影响以及如何借助这些变化简化复杂表达形式而不影响最终求得的值[^3]。 ```python import sympy as sp # 定义符号变量用于表示一般性的交换环元素 a11, a12, a13, b11, b12, b13 = sp.symbols('a11 a12 a13 b11 b12 b13') a21, a22, a23, b21, b22, b23 = sp.symbols('a21 a22 a23 b21 b22 b23') a31, a32, a33, b31, b32, b33 = sp.symbols('a31 a32 a33 b31 b32 b33') # 构建两个3x3矩阵 matrix_A = sp.Matrix([[a11,a12,a13],[a21,a22,a23],[a31,a32,a33]]) matrix_B = sp.Matrix([[b11,b12,b13],[b21,b22,b23],[b31,b32,b33]]) # 计算各自的行列式并相乘 product_of_determinants = matrix_A.det() * matrix_B.det() # 计算两者的乘积再取行列式 determinant_of_product = (matrix_A*matrix_B).det() print(f"Product of determinants: {product_of_determinants}") print(f"Determinant of product : {determinant_of_product}") if sp.simplify(product_of_determinants - determinant_of_product)==0: print("The property holds true.") else: print("There is an error in the calculation or theory application.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值